版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省肇庆市省部分重点中学数学高一上期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数关于直线对称,且当时,恒成立,则满足的x的取值范围是()A. B.C. D.2.已知函数为奇函数,,若对任意、,恒成立,则的取值范围为()A. B.C. D.3.已知指数函数,将函数的图象上的每个点的横坐标不变,纵坐标扩大为原来的倍,得到函数的图象,再将的图象向右平移个单位长度,所得图象恰好与函数的图象重合,则a的值是()A. B.C. D.4.在平行四边形中,,,为边的中点,,则()A.1 B.2C.3 D.45.已知,,,则、、的大小关系为()A. B.C. D.6.下图是函数的部分图象,则()A. B.C. D.7.设方程的解为,则所在的区间是A. B.C. D.8.下列函数中,在区间单调递增的是()A. B.C. D.9.函数的零点所在的区间为A B.C. D.10.如图所示的是水平放置的三角形直观图,D′是△A′B′C′中B′C′边上的一点,且D′离C′比D′离B′近,又A′D′∥y′轴,那么原△ABC的AB、AD、AC三条线段中A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AD,最短的是AC二、填空题:本大题共6小题,每小题5分,共30分。11.下列四个命题:①函数与的图象相同;②函数的最小正周期是;③函数的图象关于直线对称;④函数在区间上是减函数其中正确的命题是__________(填写所有正确命题的序号)12.已知扇形弧长为20cm,圆心角为,则该扇形的面积为___________.13.已知集合,则______14.已知函数则的值等于____________.15.设则__________.16.已知,则的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道(,是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口是的中点,分别落在线段上.已知米,米,记.(1)试将污水净化管道总长度(即的周长)表示为的函数,并求出定义域;(2)问当取何值时,污水净化效果最好?并求出此时管道的总长度.(提示:.)18.旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为元.旅行团中的每个人的飞机票按以下方式与旅行社结算:若旅行团的人数不超过人时,飞机票每张元;若旅行团的人数多于人时,则予以优惠,每多人,每个人的机票费减少元,但旅行团的人数最多不超过人.设旅行团的人数为人,飞机票价格元,旅行社的利润为元.(1)写出每张飞机票价格元与旅行团人数之间的函数关系式;(2)当旅行团人数为多少时,旅行社可获得最大利润?求出最大利润.19.用水清洗一堆蔬菜上的农药,设用个单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为,且已知用个单位量的水清洗一次,可洗掉本次清洗前残留农药量的,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上(1)根据题意,直接写出函数应该满足的条件和具有的性质;(2)设,现用()个单位量的水可以清洗一次,也可以把水平均分成份后清洗两次,问用哪种方案清洗后蔬菜上残留的农药量比较少,说明理由;(3)若满足题意,直接写出一组参数的值20.已知二次函数的图象关于直线对称,且关于x的方程有两个相等的实数根(1)求函数的值域;21.已知直线经过两条直线:和:的交点,直线:;(1)若,求的直线方程;(2)若,求的直线方程
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据题意,得到函数为偶函数,且在为单调递减函数,则在为单调递增函数,把不等式,转化为,即可求解.【详解】由题意,函数关于直线对称,所以函数为偶函数,又由当时,恒成立,可得函数在为单调递减函数,则在为单调递增函数,因为,可得,即或,解得或,即不等式的解集为,即满足的x的取值范围是.故选:B.2、A【解析】由奇函数性质求得,求得函数的解析式,不等式等价于,由此求得答案.【详解】解:因为函数的定义域为,又为奇函数,∴,解得,∴,所以,要使对任意、,恒成立,只需,又,∴,即,故选:A.3、D【解析】根据函数图象变换求出变换后的函数解析式,结合已知条件可得出关于实数的等式,进而可求得实数的值.【详解】由题意可得,再将的图象向右平移个单位长度,得到函数,又因为,所以,,整理可得,因为且,解得.故选:D.4、D【解析】以为坐标原点,建立平面直角坐标系,设,再利用平面向量的坐标运算求解即可【详解】以坐标原点,建立平面直角坐标系,设,则,,,,故,由可得,即,化简得,故,故,,故故选:D5、C【解析】利用对数函数、指数函数的单调性结合中间值法可得出、、的大小关系.【详解】因为,,,因此,.故选:C.6、B【解析】由图象求出函数的周期,进而可得的值,然后逆用五点作图法求出的值即可求解.【详解】解:由图象可知,函数的周期,即,所以,不妨设时,由五点作图法,得,所以,所以故选:B.7、B【解析】构造函数,则函数的零点所在的区间即所在的区间,由于连续,且:,,由函数零点存在定理可得:所在的区间是.本题选择B选项.8、B【解析】根据单调性依次判断选项即可得到答案.【详解】对选项A,区间有增有减,故A错误,对选项B,,令,,则,因为,在为增函数,在为增函数,所以在为增函数,故B正确.对选项C,,,解得,所以,为减函数,,为增函数,故C错误.对选项D,在为减函数,故D错误.故选:B9、B【解析】根据零点的存在性定理,依次判断四个选项的区间中是否存在零点【详解】,,,由零点的存在性定理,函数在区间内有零点,选择B【点睛】用零点的存在性定理只能判断函数有零点,若要判断有几个零点需结合函数的单调性判断10、C【解析】由斜二测画法得到原三角形,结合其几何特征易得答案.【详解】由题意得到原△ABC的平面图为:其中,AD⊥BC,BD>DC,∴AB>AC>AD,∴△ABC的AB、AD、AC三条线段中最长的是AB,最短的是AD故选C【点睛】本题考查了斜二测画法,考查三角形中三条线段长的大小的比较,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、①②④【解析】首先需要对命题逐个分析,利用三角函数的相关性质求得结果.【详解】对于①,,所以两个函数的图象相同,所以①对;对于②,,所以最小正周期是,所以②对;对于③,因为,所以,,,因为,所以函数的图象不关于直线对称,所以③错,对于④,,当时,,所以函数在区间上是减函数,所以④对,故答案为①②④【点睛】该题考查的是有关三角函数的性质,涉及到的知识点有利用诱导公式化简函数解析式,余弦函数的周期,正弦型函数的单调性,属于简单题目.12、【解析】求出扇形的半径后,利用扇形的面积公式可求得结果.【详解】由已知得弧长,,所以该扇形半径,所以该扇形的面积.故答案为:13、【解析】∵∴,故答案为14、18【解析】根据分段函数定义计算【详解】故答案为:1815、【解析】先求,再求的值.【详解】由分段函数可知,.故答案为:【点睛】本题考查分段函数求值,属于基础题型.16、【解析】用诱导公式计算【详解】,,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),定义域为.(2)当或时所铺设的管道最短,为米.【解析】(1)如图,因为都是直角三角形,故可以得到,也就是,其中.(2)可变形为,令后,则有,其中,故取的最大值米.【详解】(1).由于,,所以,故.管道的总长度,定义域为.(2).设,则,由于,所以.因为在内单调递减,于是当时,取的最大值米.(此时或).答:当或时所铺设的管道最短,为米.【点睛】在三角变换中,注意之间有关系,如,,三者中知道其中一个,必定可以求出另外两个.18、(1);(2)当旅游团人数为或时,旅行社可获得最大利润为元.【解析】(1)讨论和两种情况,分别计算得到答案.(2),分别计算最值得到答案.【详解】(1)依题意得,当时,.当时,;∴(2)设利润为,则.当且时,,当且时,,其对称轴为因为,所以当或时,.故当旅游团人数为或时,旅行社可获得最大利润为元.【点睛】本题考查了分段函数的应用,意在考查学生的应用能力和计算能力.19、(1)答案见解析(2)答案不唯一,具体见解析(3)的值依次为(答案不唯一)【解析】(1)根据题意直接写出定义域,值域,,单调性;(2)分别计算2种方案完成后蔬菜农药残留,做差后分类讨论比较大小即可得出答案;(3)根据(1)中函数的性质,直接写出一组即可.【小问1详解】满足的条件和性质如下:;定义域为;;;在区间上单调递减【小问2详解】设清洗前残留的农药量为,若清洗一次,设清洗后蔬菜上残留的农药量为,则,则若把水平均分成份后清洗两次,设第一次清洗后蔬菜上残留的农药量为,则设第二次清洗后蔬菜上残留的农药量为,,比较与的大小:①当,即时,,即,由不等式的性质可得,所以把水平均分成份后清洗两次蔬菜上残留的农药量比较少;②当,即时,,两种方案清洗后蔬菜上残留的农药量一样多;③当,即时,由不等式的性质可得,所以清洗一次后蔬菜上残留的农药量比较少【小问3详解】参数的值依次为.(答案不唯一)20、(1)(2)或【解析】(1)根据对称轴以及判别式等于得出,再由基本不等式得出函数的值域;(2)利用换元法结合对数函数以及二次函数的单调性得出a的值【小问1详解】依题意得,因为,所以,解得,,故,,当时,,当且仅当,即时,等号成立当时,,当且仅当,即时,等号成立故的值域为【小问2详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医生聘用期间个人工作总结(13篇)
- 药物滥用社会工作干预-洞察分析
- 网络舆论心理分析-第1篇-洞察分析
- 戏剧剧本创作-洞察分析
- 信托法司法解释解读-洞察分析
- 医院个人一岗双责廉洁工作总结(6篇)
- 《涂装工程》课件
- 《家庭系统排列讲座》课件
- 办公室文化与家庭教育的融合实践
- 医学背景下的数学基础教育研究
- 烈士陵园的数字化转型与智能服务
- 医院与陪护公司的协议范文
- 古琴介绍(英文)(部编)课件
- DL-T5704-2014火力发电厂热力设备及管道保温防腐施工质量验收规程
- 2024年山东省烟台市中考道德与法治试题卷
- 女性生殖健康与疾病智慧树知到期末考试答案章节答案2024年山东中医药大学
- 2023-2024学年四川省绵阳市九年级上册期末化学试题(附答案)
- 心电图进修汇报
- 中医科进修总结汇报
- 初中英语比较级和最高级专项练习题含答案
- 激光技术在能源、环保、农业等领域的应用
评论
0/150
提交评论