![广西桂梧高中2025届高一数学第一学期期末复习检测模拟试题含解析_第1页](http://file4.renrendoc.com/view12/M06/3D/32/wKhkGWcNamCABJY8AAHQ3qQINWY885.jpg)
![广西桂梧高中2025届高一数学第一学期期末复习检测模拟试题含解析_第2页](http://file4.renrendoc.com/view12/M06/3D/32/wKhkGWcNamCABJY8AAHQ3qQINWY8852.jpg)
![广西桂梧高中2025届高一数学第一学期期末复习检测模拟试题含解析_第3页](http://file4.renrendoc.com/view12/M06/3D/32/wKhkGWcNamCABJY8AAHQ3qQINWY8853.jpg)
![广西桂梧高中2025届高一数学第一学期期末复习检测模拟试题含解析_第4页](http://file4.renrendoc.com/view12/M06/3D/32/wKhkGWcNamCABJY8AAHQ3qQINWY8854.jpg)
![广西桂梧高中2025届高一数学第一学期期末复习检测模拟试题含解析_第5页](http://file4.renrendoc.com/view12/M06/3D/32/wKhkGWcNamCABJY8AAHQ3qQINWY8855.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西桂梧高中2025届高一数学第一学期期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,则a,b,c的大小关系为A. B.C. D.2.若定义域为R的函数满足,且,,有,则的解集为()A. B.C. D.3.在空间四边形的各边上的依次取点,若所在直线相交于点,则A.点必在直线上 B.点必在直线上C.点必在平面外 D.点必在平面内4.已知扇形的面积为9,半径为3,则扇形的圆心角(正角)的弧度数为()A.1 B.C.2 D.5.幂函数y=xa,当a取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A(1,0),B(0,1),连接AB,线段AB恰好被其中的两个幂函数y=xa,y=xb的图象三等分,即有BM=MN=NA,那么=()A.0 B.1C. D.26.下列关系中,正确的是()A. B.C. D.7.已知指数函数(,且),且,则的取值范围()A. B.C. D.8.设,,,则()A. B.C. D.9.用斜二测画法画一个水平放置平面图形的直观图为如图所示的直角梯形,其中BC=AB=2,则原平面图形的面积为()A. B.C. D.10.已知函数(,),若的图像的任何一条对称轴与x轴交点的横坐标均不属于区间,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.下面四个命题:①定义域上单调递增;②若锐角,满足,则;③是定义在上的偶函数,且在上是增函数,若,则;④函数的一个对称中心是;其中真命题的序号为______.12.若函数的定义域为[-2,2],则函数的定义域为______13.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.若,则_________.14.设向量,,则__________15.已知空间中两个点A(1,3,1),B(5,7,5),则|AB|=_____16.已知圆心角为2rad的扇形的周长为12,则该扇形的面积为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数y=cosx+sinx的最小正周期、最大值、最小值.18.旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为元.旅行团中的每个人的飞机票按以下方式与旅行社结算:若旅行团的人数不超过人时,飞机票每张元;若旅行团的人数多于人时,则予以优惠,每多人,每个人的机票费减少元,但旅行团的人数最多不超过人.设旅行团的人数为人,飞机票价格元,旅行社的利润为元.(1)写出每张飞机票价格元与旅行团人数之间的函数关系式;(2)当旅行团人数为多少时,旅行社可获得最大利润?求出最大利润.19.已知角的终边经过点(1)求值;(2)求的值20.(1)已知是奇函数,求的值;(2)画出函数图象,并利用图象回答:为何值时,方程无解?有一解?有两解.21.圆内有一点,为过点且倾斜角为的弦.(1)当时,求的长;(2)当弦被点平分时,写出直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用指数函数与对数函数的单调性即可得出【详解】解:,,又,故选D【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题2、A【解析】根据已知条件易得关于直线x=2对称且在上递减,再应用单调性、对称性求解不等式即可.【详解】由题设知:关于直线x=2对称且在上单调递减由,得:,所以,解得故选:A3、B【解析】由题意连接EH、FG、BD,则P∈EH且P∈FG,再根据两直线分别在平面ABD和BCD内,根据公理3则点P一定在两个平面的交线BD上【详解】如图:连接EH、FG、BD,∵EH、FG所在直线相交于点P,∴P∈EH且P∈FG,∵EH⊂平面ABD,FG⊂平面BCD,∴P∈平面ABD,且P∈平面BCD,由∵平面ABD∩平面BCD=BD,∴P∈BD,故选B【点睛】本题考查公理3的应用,即根据此公理证明线共点或点共线问题,必须证明此点是两个平面的公共点,可有点在线上,而线在面上进行证明4、C【解析】利用扇形面积公式即可求解.【详解】设扇形的圆心角的弧度数为,由题意得,得.故选:C.5、A【解析】由题意得,代入函数解析式,进而利用指对互化即可得解.【详解】BM=MN=NA,点A(1,0),B(0,1),所以,将两点坐标分别代入y=xa,y=xb,得所以,所以.故选:A.【点睛】本题主要考查了幂函数的图像及对数的运算,涉及换底公式,属于基础题.6、C【解析】根据自然数集、正整数集、整数集以及有理数集的含义判断数与集合的关系.【详解】对于A,,所以A错误;对于B,不是整数,所以,所以B错误;对于C,,所以C正确;对于D,因为不含任何元素,则,所以D错误.故选:C.7、A【解析】根据指数函数的单调性可解决此题【详解】解:由指数函数(,且),且根据指数函数单调性可知所以,故选:A8、A【解析】先计算得到,,再利用展开得到答案.详解】,,;,;故选:【点睛】本题考查了三角函数值的计算,变换是解题的关键.9、C【解析】先求出直观图中,∠ADC=45°,AB=BC=2,,DC=4,即可得到原图形是一个直角梯形和各个边长及高,直接求面积即可.【详解】直观图中,∠ADC=45°,AB=BC=2,DC⊥BC,∴,DC=4,∴原来的平面图形上底长为2,下底为4,高为的直角梯形,∴该平面图形面积为.故选:C10、C【解析】由已知得,,且,解之讨论k,可得选项.【详解】因为的图像的任何一条对称轴与x轴交点的横坐标均不属于区间,所以,所以,故排除A,B;又,且,解得,当时,不满足,当时,符合题意,当时,符合题意,当时,不满足,故C正确,D不正确,故选:C.【点睛】关键点睛:本题考查根据正弦型函数的对称性求得参数的范围,解决问题的关键在于运用整体代换的思想,建立关于的不等式组,解之讨论可得选项.二、填空题:本大题共6小题,每小题5分,共30分。11、②③④【解析】由正切函数的单调性,可以判断①真假;根据正弦函数的单调性,结合诱导公式,可以判断②的真假;根据函数奇偶性与单调性的综合应用,可以判断③的真假;根据正弦型函数的对称性,我们可以判断④的真假,进而得到答案【详解】解:由正切函数的单调性可得①“在定义域上单调递增”为假命题;若锐角、满足,即,即,则,故②为真命题;若是定义在上的偶函数,且在上是增函数,则函数在上为减函数,若,则,则,故③为真命题;由函数则当时,故可得是函数的一个对称中心,故④为真命题;故答案为:②③④【点睛】本题考查的知识点是命题的真假判断与应用,函数单调性的性质,偶函数,正弦函数的对称性,是对函数性质的综合考查,熟练掌握基本初等函数的性质是解答本题的关键12、【解析】∵函数的定义域为[-2,2]∴,∴∴函数的定义域为13、【解析】利用同角的基本关系式,可得,代入所求,结合辅助角公式,即可求解【详解】因为,,所以,所以,故答案为【点睛】本题考查同角三角函数的基本关系式,辅助角公式,考查计算化简的能力,属基础题14、【解析】,故,故填.15、【解析】直接代入空间中两点间的距离公式即可得解.【详解】∵空间中两个点A(1,3,1),B(5,7,5),∴|AB|4故答案为:4【点睛】本题考查空间中两点间的距离公式,属于基础题.16、9【解析】根据题意条件,先设出扇形的半径和弧长,并找到弧长与半径之间的关系,通过已知的扇形周长,可以求解出扇形的半径和弧长,然后再利用完成求解.【详解】设扇形的半径为,弧长为,由已知得,圆心角,则,因为扇形的周长为12,所以,所以,,则.故答案为:9.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、,2,.【解析】先对函数进行化简,然后结合性质可求.【详解】;最小正周期为;当,即时,取到最大值;当,即时,取到最小值;【点睛】本题主要考查三角函数的性质,一般是把目标式化简为标准型,然后结合性质求解,侧重考查数学抽象的核心素养.18、(1);(2)当旅游团人数为或时,旅行社可获得最大利润为元.【解析】(1)讨论和两种情况,分别计算得到答案.(2),分别计算最值得到答案.【详解】(1)依题意得,当时,.当时,;∴(2)设利润为,则.当且时,,当且时,,其对称轴为因为,所以当或时,.故当旅游团人数为或时,旅行社可获得最大利润为元.【点睛】本题考查了分段函数的应用,意在考查学生的应用能力和计算能力.19、(1),,;(2)【解析】(1)直接利用三角函数的坐标定义求解;(2)化简,即得解.【小问1详解】解:,有,,;【小问2详解】解:,将代入,可得20、(1);(2)时,无解;时,有两个解;或时,有一个解.【解析】(1)由奇函数的定义,,代入即可得出结果.(2)画出函数图象,结合函数图象可得出结果.【详解】(1)为奇函数,,所以(2)函数图象如图,可知时,无解;时,有两个解;或时,有一个解【点睛】本题考查了奇函数的定义,考查了运算求解能力和画图能力,数形结合思想,属于基础题目.21、(1);(2).
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅游服务长期合作意向书
- 2025年铜川c1货运从业资格证模拟考试题
- 2025年吴忠货运从业资格证考试卷
- 数字化办公解决方案手册
- 气象站采购合同书
- 货车司机聘用协议合同
- 烟囱滑模专家论证施工方案
- 电子商务网站运营服务协议及免责条款说明
- 数字化办公趋势探讨
- 城市生活垃圾处理项目投资合同
- 2024年人工智能助力社会治理现代化
- 29.4常见肿瘤标志物讲解
- 华为企业大学培训体系
- 学生奖励兑换券模板
- 手术室医院感染控制规范
- 铸牢中华民族共同体意识主题班会教案
- 运营与管理行业培训资料
- 48贵州省贵阳市2023-2024学年五年级上学期期末数学试卷
- 骑手食品安全培训
- 第十六章二次根式单元复习题-2023-2024学年人教版八年级数学下册
- 2023-2024新版北师大七年级数学下册全册教案
评论
0/150
提交评论