山西省长治二中2025届高二数学第一学期期末综合测试试题含解析_第1页
山西省长治二中2025届高二数学第一学期期末综合测试试题含解析_第2页
山西省长治二中2025届高二数学第一学期期末综合测试试题含解析_第3页
山西省长治二中2025届高二数学第一学期期末综合测试试题含解析_第4页
山西省长治二中2025届高二数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省长治二中2025届高二数学第一学期期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,平行六面体中,与的交点为,设,则选项中与向量相等的是()A. B.C. D.2.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆就是他的研究成果之一.指的是:已知动点与两定点的距离之比,那么点的轨迹就是阿波罗尼斯圆.已知动点的轨迹是阿波罗尼斯圆,其方程为,其中,定点为轴上一点,定点的坐标为,若点,则的最小值为()A. B.C. D.3.甲烷是一种有机化合物,分子式为,其在自然界中分布很广,是天然气、沼气的主要成分.如图所示的为甲烷的分子结构模型,已知任意两个氢原子之间的距离(H-H键长)相等,碳原子到四个氢原子的距离(C-H键长)均相等,任意两个H-C-H键之间的夹角为(键角)均相等,且它的余弦值为,即,若,则以这四个氢原子为顶点的四面体的体积为()A. B.C. D.4.若直线与圆相交于、两点,且(其中为原点),则的值为()A. B.C. D.5.已知函数,则下列说法正确的是()A.的最小正周期为 B.的图象关于直线C.的一个零点为 D.在区间的最小值为16.已知直线过点,当直线与圆有两个不同的交点时,其斜率的取值范围是()A. B.C. D.7.曲线在点处的切线方程为()A. B.C. D.8.已知分别是双曲线的左、右焦点,动点P在双曲线的左支上,点Q为圆上一动点,则的最小值为()A.6 B.7C. D.59.已知数列的前n项和为,,,则()A. B.C.1025 D.204910.已知向量,,且,则的值是()A. B.C. D.11.《张邱建算经》记载:今有女子不善织布,逐日织布同数递减,初日织五尺,末一日织一尺,计织三十日,问第11日到第20日这10日共织布()A.30尺 B.40尺C.6尺 D.60尺12.已知数列的首项为,且,若,则的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过点与直线平行的直线的方程是________.14.圆锥的母线长为2,母线所在直线与圆锥的轴所成角为,则该圆锥的侧面积大小为____________.(结果保留)15.与双曲线有共同的渐近线,并且经过点的双曲线方程是______16.若展开式的二项式系数之和是64,则展开式中的常数项的值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若与在处有相同的切线,求实数的取值;(2)若时,方程在上有两个不同的根,求实数的取值范围.18.(12分)已知数列{an}的前n项和为Sn,.(1)求数列{an}通项公式;(2)求数列的前n项和,求使不等式成立的最大整数m的值.19.(12分)已知函数(1)讨论函数的单调性;(2)证明:对任意正整数n,20.(12分)如图,几何体中,平面,,,,E是中点,二面角的平面角为.(1)求证:平面;(2)求直线与平面所成角的正弦值.21.(12分)已知点为椭圆C的右焦点,P为椭圆上一点,且(O为坐标原点),.(1)求椭圆C的标准方程;(2)经过点的直线l与椭圆C交于A,B两点,求弦的取值范围.22.(10分)如图,第1个图形需要4根火柴,第2个图形需要7根火柴,,设第n个图形需要根火柴(1)试写出,并求;(2)记前n个图形所需的火柴总根数为,设,求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用空间向量加减法、数乘的几何意义,结合几何体有,进而可知与向量相等的表达式.【详解】连接,如下图示:,.故选:B2、D【解析】设,,根据和求出a的值,由,两点之间直线最短,可得的最小值为,根据坐标求出即可.【详解】设,,所以,由,所以,因为且,所以,整理可得,又动点M的轨迹是,所以,解得,所以,又,所以,因为,所以的最小值,当M在位置或时等号成立.故选:D3、A【解析】利用余弦定理求得,计算出正四面体的高,从而计算出正四面体的体积.【详解】设,则由余弦定理知:,解得,故该正四面体的棱长均为由正弦定理可知:该正四面体底面外接圆的半径,高故该正四面体的体积为故选:A4、D【解析】分析出为等腰直角三角形,可得出原点到直线的距离,利用点到直线的距离公式可得出关于的等式,由此可解得的值.【详解】圆的圆心为原点,由于且,所以,为等腰直角三角形,且圆心到直线的距离为,由点到直线的距离公式可得,解得.故选:D.【点睛】关键点点睛:本题考查利用圆周角求参数,解题的关键在于求出弦心距,再利用点到直线的距离公式列方程求解参数.5、D【解析】根据余弦函数的图象与性质判断其周期、对称轴、零点、最值即可.【详解】函数,周期为,故A错误;函数图像的对称轴为,,,不是对称轴,故B错误;函数的零点为,,,所以不是零点,故C错误;时,,所以,即,所以,故D正确.故选:D6、A【解析】设直线方程,利用圆与直线的关系,确定圆心到直线的距离小于半径,即可求得斜率范围.【详解】如下图:设直线l的方程为即圆心为,半径是1又直线与圆有两个不同的交点故选:A7、A【解析】利用切点和斜率求得切线方程.【详解】由,有曲线在点处的切线方程为,整理为故选:A8、A【解析】由双曲线的定义及三角形的几何性质可求解.【详解】如图,圆的圆心为,半径为1,,,当,,三点共线时,最小,最小值为,而,所以故选:A9、B【解析】根据题意得,进而根据得数列是等比数列,公比为,首项为,再根据等比数列求和公式求解即可.【详解】解:因为数列的前n项和为满足,所以当时,,解得,当时,,即所以,解得或,因为,所以.所以,,所以当时,,所以,即所以数列是等比数列,公比为,首项为,所以故选:B10、A【解析】求出向量,的坐标,利用向量数量积坐标表示即可求解.【详解】因为向量,,所以,,因为,所以,解得:,故选:A.11、A【解析】由题意可知,每日的织布数构成等差数列,由等差数列的求和公式得解.【详解】由题女子织布数成等差数列,设第日织布为,有,所以,故选:A.12、C【解析】由题意,得到,利用叠加法求得,结合由,转化为恒成立,分,和三种情况讨论,即可求解.【详解】因为,可得,所以,所以,各式相加可得,所以,由,可得恒成立,整理得恒成立,当时,,不等式可化为恒成立,所以;当时,,不等式可化为恒成立;当时,,不等式可化为恒成立,所以,综上可得,实数的取值范围是.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据给定条件设出所求直线方程,利用待定系数法求解即得.【详解】设与直线平行的直线的方程为,而点在直线上,于是得,解得,所以所求的直线的方程为.故答案为:14、【解析】由题设知:圆锥的轴截面为等边三角形,进而求圆锥的底面周长,由扇形面积公式求圆锥的侧面积大小.【详解】由题设,圆锥的轴截面为等边三角形,又圆锥的母线长为2,∴底面半径为1,则底面周长为,∴圆锥的侧面积大小为.故答案为:.15、【解析】设双曲线的方程为,将点代入方程可求的值,从而可得结果【详解】设与双曲线有共同的渐近线的双曲线的方程为,该双曲线经过点,所求的双曲线方程为:,整理得故答案为【点睛】本题考查双曲线的方程与简单性质,意在考查灵活应用所学知识解答问题的能力,属于中档题.与共渐近线的双曲线方程可设为,只需根据已知条件求出即可.16、【解析】首先利用展开式的二项式系数和是求出,然后即可求出二项式的常数项.【详解】由题知展开式的二项式系数之和是,故有,可得,知当时有.故展开式中的常数项为.故答案为:.【点睛】本题考查了利用二项式的系数和求参数,求二项式的常数项,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据导数的几何意义求得函数在处的切线方程,再由有相同的切线这一条件即可求解;(2)先分离,再研究函数的单调性,最后运用数形结合的思想求解即可.【小问1详解】设公切线与的图像切于点,f'(x)=1+lnx⇒f由题意得:;【小问2详解】当时,,①,①式可化为为,令令,,在上单调递增,在上单调递减.,当时,由题意知:18、(1);(2).【解析】(1)根据给定的递推公式变形,再构造常数列求解作答.(2)利用(1)的结论求出,再利用裂项相消法求和,由单调性求出最大整数m值作答.【小问1详解】依题意,,当时,,两式相减得:,即,整理得:,于是得,所以数列{an}的通项公式是.【小问2详解】由(1)得,,数列是递增数列,因此,,于是有,则,不等式成立,则,,于是得,所以使不等式成立的最大整数m的值是505.【点睛】思路点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的19、(1)见解析(2)见解析【解析】(1)由,令,得,或,又的定义域为,讨论两个根及的大小关系,即可判定函数的单调性;(2)当时,在,上递减,则,即,由此能够证明【小问1详解】的定义域为,,令,得,或,①当,即时,若,则,递增;若,则,递减;②当,即时,若,则,递减;若,则,递增;若,则,递减;综上所述,当-2<a<0时,f(x)在,单调递减,在单调递增;当a≥0时,f(x)在单调递增,在单调递减.【小问2详解】由(2)知当时,在,上递减,,即,,,,2,3,,,,【点睛】本题考查利用导数研究函数的单调性,本题的关键是令a=1,用已知函数的单调性构造,再令x=恰当地利用对数求和进行解题20、(1)证明见解答;(2)【解析】(1)平面,可得,是二面角的平面角,由余弦定理可得,,从而可证平面;(2)以为坐标原点,,,所在直线为坐标轴建立如图所示的空间直角坐标系,求平面的一个法向量与的方向向量,利用向量法可求直线与平面所成角的正弦值【小问1详解】证明:取中点,又是中点,,,平面,平面,,平面,是二面角的平面角,,又,,在中,由余弦定理有,可得,又是中点,,平面,,又,平面,平面.【小问2详解】解:以为坐标原点,,,所在直线为坐标轴建立如图所示的空间直角坐标系,则,0,,,1,,,0,,,1,,1,,,0,,,1,设平面的一个法向量为,,,则,令,则,,平面的一个法向量为,,,设直线与平面所成角为,则,直线与平面所成角的正弦值为21、(1)(2)【解析】(1)利用椭圆定义求得椭圆的即可解决;(2)经过点的直线l分为斜率不存在和存在两种情况,分别去求弦,再去求其取值范围即可.【小问1详解】由题意得.记左焦点为,,则,,解得.由椭圆定义得:,则,所以椭圆C的方程为:.【小问2详解】①当直线l的斜率不存在时,.②当直线l的斜率存在时,设斜率为k,则l的方程为.联立椭圆与直线的方程(由于点在椭圆内,∴成立),且,,令,则,,,由得,综上所述,弦的取值范围为.【点睛】(1)解答直线与椭圆的题目时,时常

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论