山东省泰安市宁阳第一中学2025届数学高二上期末复习检测模拟试题含解析_第1页
山东省泰安市宁阳第一中学2025届数学高二上期末复习检测模拟试题含解析_第2页
山东省泰安市宁阳第一中学2025届数学高二上期末复习检测模拟试题含解析_第3页
山东省泰安市宁阳第一中学2025届数学高二上期末复习检测模拟试题含解析_第4页
山东省泰安市宁阳第一中学2025届数学高二上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省泰安市宁阳第一中学2025届数学高二上期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,若,其中是自然对数底,则()A. B.C. D.2.在四棱锥中,底面ABCD是正方形,E为PD中点,若,,,则()A. B.C. D.3.已知椭圆和双曲线有共同的焦点,分别是它们的在第一象限和第三象限的交点,且,记椭圆和双曲线的离心率分别为,则等于()A.4 B.2C.2 D.34.若数列满足,则()A. B.C. D.5.若直线与曲线有两个公共点,则实数的取值范围为()A. B.C. D.6.设集合,集合,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.复数,且z在复平面内对应的点在第二象限,则实数m的值可以为()A.2 B.C. D.08.命题:“,”的否定是()A., B.,C., D.,9.已知实数满足,则的取值范围()A.-1m B.-1m<0或0<mC.m或m-1 D.m1或m-110.一物体做直线运动,其位移(单位:)与时间(单位:)的关系是,则该物体在时的瞬时速度是A. B.C. D.11.我国古代数学典籍《四元玉鉴》中有如下一段话:“河有汛,预差夫一千八百八十人筑堤,只云初日差六十五人,次日转多七人,今有三日连差三百人,问已差人几天,差人几何?”其大意为“官府陆续派遣1880人前往修筑堤坝,第一天派出65人,从第二天开始每天派出的人数比前一天多7人.已知最后三天一共派出了300人,则目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人12.过双曲线(,)的左焦点作圆:的两条切线,切点分别为,,双曲线的左顶点为,若,则双曲线的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线上一点到其焦点的距离为,则的值为______14.在棱长为2的正方体中,点P是直线上的一个动点,点Q在平面上,则的最小值为________.15.已知抛物线的焦点F在直线上,过点F的直线l与抛物线C相交于A,B两点,O为坐标原点,△的面积是△面积的4倍,则直线l的方程为____________16.不等式的解集是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,且a0(1)当a=1时,求函数f(x)的单调区间;(2)记函数,若函数有两个零点,①求实数a的取值范围;②证明:18.(12分)已知函数.(1)当时,求的极值;(2)设函数,,,求证:.19.(12分)如图,在三棱锥中,平面平面,,都是等腰直角三角形,,,,分别为,的中点.(1)求证:平面;(2)求证:平面.20.(12分)已知圆的圆心为,且圆经过点(1)求圆的标准方程;(2)若圆:与圆恰有两条公切线,求实数取值范围21.(12分)设数列满足(1)求的通项公式;(2)记数列的前项和为,是否存在实数,使得对任意恒成立.22.(10分)已知椭圆的左顶点、上顶点和右焦点分别为,且的面积为,椭圆上的动点到的最小距离是(1)求椭圆的方程;(2)过椭圆的左顶点作两条互相垂直的直线交椭圆于不同的两点(异于点).①证明:动直线恒过轴上一定点;②设线段中点为,坐标原点为,求的面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用函数的单调性可得正确的选项.【详解】令,因为均为,故为上的增函数,由可得,故,故选:A.2、C【解析】根据向量线性运算法则计算即可.【详解】故选:C3、A【解析】设椭圆的长半轴长为,双曲线的实半轴长为,由定义可得,,在中利用余弦定理可得,即可求出结果.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设在第一象限,根据椭圆和双曲线定义,得,,,由可得,又,在中,,即,化简得,两边同除以,得.故选:A.【点睛】关键点睛:本题考查共焦点的椭圆与双曲线的离心率问题,解题的关键是利用定义以及焦点三角形的关系列出齐次方程式进行求解.4、C【解析】利用前项积与通项的关系可求得结果.【详解】由已知可得.故选:C.5、D【解析】由题可知,曲线表示一个半圆,结合半圆的图像和一次函数图像即可求出的取值范围.【详解】由得,画出图像如图:当直线与半圆O相切时,直线与半圆O有一个公共点,此时,,所以,由图可知,此时,所以,当直线如图过点A、B时,直线与半圆O刚好有两个公共点,此时,由图可知,当直线介于与之间时,直线与曲线有两个公共点,所以.故选:D.6、A【解析】解不等式求集合,然后判断两个集合的关系【详解】,解得,故,可化为或,解得或,故,故“”是“”的充分不必要条件故选:A7、B【解析】根据复数的几何意义求出的范围,即可得出答案.【详解】解:当z在复平面内对应的点在第二象限时,则有,可得,结合选项可知,B正确故选:B8、D【解析】利用全称量词命题的否定可得出结论.【详解】由全称量词命题的否定可知,命题“,”的否定是“,”.故选:D.9、C【解析】把看成动点与所确定的直线的斜率,动点在所给曲线上.【详解】就是点,所确定的直线的斜率,而在上,因为,.故选:C10、A【解析】先对求导,然后将代入导数式,可得出该物体在时的瞬时速度【详解】对求导,得,,因此,该物体在时的瞬时速度为,故选A【点睛】本题考查瞬时速度的概念,考查导数与瞬时变化率之间的关系,考查计算能力,属于基础题11、B【解析】根据题意,设每天派出的人数组成数列,可得数列是首项,公差数7的等差数列,解方程可得所求值【详解】解:设第天派出的人数为,则是以65为首项、7为公差的等差数列,且,,∴,,∴天则目前派出的人数为人,故选:B12、C【解析】根据,,可以得到,从而得到与的关系式,再由,,的关系,进而可求双曲线的渐近线方程【详解】解:由,,则是圆的切线,,,,所以,因为双曲线的渐近线方程为,即为故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将抛物线方程化为标准方程,利用抛物线的定义将抛物线上的点到焦点的距离转化为到准线的距离,再利用点到直线的距离公式进行求解.【详解】将抛物线化为,由抛物线定义得点到准线的距离为,即,解得故答案为:.14、【解析】数形结合分析出的最小值为点到平面的距离,然后利用等体积法求出距离即可.【详解】因为,且平面,平面,所以平面,所以的最小值为点到平面的距离,设到平面的距离为,则,所以,即,解得,故答案为:.15、【解析】设A,B分别为,由焦点在已知直线上求F坐标及抛物线方程,再根据题设三角形的面积关系可得,并设直线l为,联立抛物线应用韦达定理求参数m,即可知直线l的方程.【详解】设点A,B的坐标分别为,直线,令可得,故焦点F的坐标为,所以,由,,而△的面积是△面积的4倍,所以,即,设直线l为,联立方程,消去x后整理为,所以,代入,有,可得,则直线l的方程为故答案为:.【点睛】关键点点睛:根据抛物线焦点位置及其所在直线求抛物线方程,由面积关系得到交点纵坐标的数量关系,注意交点在x轴两侧,再设直线联立抛物线求参数即可.16、【解析】先将分式不等式化为一元二次不等式,再根据一元二次不等式的解法解不等式即可【详解】∵,∴(x﹣2)(x+4)<0,∴-4<x<2,即不等式的解集为{x|-4<x<2}故答案为.【点睛】本题主要考查分式不等式及一元二次不等式的解法,比较基础三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)函数f(x)在区间(0,+)上单调递减(2)①;②证明见解析【解析】(1)求导,求解可得导函数恒小于等于0,即得证;(2)①分析函数的单调性,由有两个实数根可求解;②由(1)得2lnxx−,再利用其放缩可得,由此有,问题得证.【小问1详解】当a=1时,函数因为所以函数f(x)在区间(0,+)上单调递减;【小问2详解】(i)由已知可得方程有两个实数根记,则.当时,,函数k(x)是增函数;当时,,函数k(x)是减函数,所以,故(ii)易知,当x1时,,故.由(1)可知,当0x1时,,所以2lnxx−由,得,所以因为,所以18、(1),无极大值(2)证明见解析【解析】(1)求出函数的导数,判断函数的单调性,进而确定极值点,求得答案;(2)将要证明的不等式变形为,然后构造函数,利用导数判断其单调性,求其最值,进而证明结论.【小问1详解】当时,,,由得,列表得:1--0+减减极小值增由上表可知,无极大值.;【小问2详解】证明:,即证;∵,则,故只需证,即证令,,得,得,∴在上递增,在上递减∴,∴,∴.19、(1)证明见解析(2)证明见解析【解析】(1)由三角形的中位线定理可证得MN∥AB,再由线面垂直的判定定理可证得结论,(2)由已知可得AB⊥BC,VC⊥AC,再由已知结合面面垂直的性质定理可得VC⊥平面ABC,从而有AB⊥VC,然后由线面垂直的判定定理可证得结论【小问1详解】证明:∵M,N分别为VA,VB的中点,∴MN∥AB,∵AB⊄平面CMN,MN⊂平面CMN,∴AB∥平面CMN【小问2详解】证明:∵△ABC和△VAC均是等腰直角三角形,AB=BC,AC=CV,∴AB⊥BC,VC⊥AC,∵平面VAC⊥平面ABC,平面VAC∩平面ABC=AC,∴VC⊥平面ABC,∵AB⊂平面ABC,∴AB⊥VC,又VC∩BC=C,∴AB⊥平面VBC20、(1);(2).【解析】(1)根据给定条件求出圆C的半径,再直接写出方程作答.(2)由给定条件可得圆C与圆O相交,由此列出不等式求解作答.【小问1详解】依题意,圆C的半径,所以圆的标准方程是:.【小问2详解】圆:圆心,半径为,因圆与圆恰有两条公切线,则有圆O与圆C相交,即,而,因此有,解得,所以实数的取值范围是.21、(1)(2)存在【解析】(1)利用“退作差”法求得的通项公式.(2)利用裂项求和法求得,由此求得.【小问1详解】依题意①,当时,.当时,②,①-②得,,时,上式也符合.所以.【小问2详解】.所以.故存在实数,使得对任意恒成立.22、(1)(2)①证明见解析;②【解析】(1)根据题意得,,解方程即可;(2)①设直线:,直线:,联立曲线分别求出点和的坐标,求直线方程判断定点即可;②根据题意得,代入求最值即可.【小问1详解】根据题意得,,,又,三个式子联立解得,,,所以椭圆的方程为:【小问2详解】①证明:设两条直线分别为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论