版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省忠德学校衡水教学部2025届高二上数学期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知O为坐标原点,=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当取得最小值时,点Q的坐标为()A. B.C. D.2.若某群体中的成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.3.已知双曲线的左右焦点分别是和,点关于渐近线的对称点恰好落在圆上,则双曲线的离心率为()A. B.2C. D.34.若命题“,”是假命题,则实数的取值范围为()A. B.C. D.5.将函数的图象向左平移个单位长度后,得到函数的图象,则()A. B.C. D.6.已知椭圆的离心率为.双曲线的渐近线与椭圆有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆的方程为A. B.C. D.7.在长方体中,,,则异面直线与所成角的正弦值是()A. B.C. D.8.在中,角A,B,C的对边分别为a,b,c.若,,则的形状为()A.直角三角形 B.等边三角形C.等腰直角三角形 D.等腰或直角三角形9.已知直线为抛物线的准线,直线经过抛物线的焦点,与抛物线交于点,则的最小值为()A. B.C.4 D.810.已知函数,,若,使得,则实数的取值范围是()A. B.C. D.11.曲线与曲线的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等12.在空间直角坐标系中,为直线的一个方向向量,为平面的一个法向量,且,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数,,,满足,,,则的最大值是______14.展开式中的系数是___________.15.已知命题:,总有.则为______16.直线恒过定点,则定点坐标为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,且点在椭圆上(1)求椭圆的标准方程;(2)若过定点的直线交椭圆于不同的两点、(点在点、之间),且满足,求的取值范围.18.(12分)已知直线,,分别求实数的值,使得:(1);(2);(3)与相交.19.(12分)在平面直角坐标系xOy中,O为坐标原点,已知直线:mx-(2-m)y-4=0与直线h:x+y-2=0的交点M在第一三象限的角平分线上.(1)求实数m的值;(2)若点P在直线l上且,求点P的坐标.20.(12分)已知离心率为的椭圆经过点.(1)求椭圆的方程;(2)若不过点的直线交椭圆于两点,求面积的最大值.21.(12分)在中,角A、B、C的对边分别为a、b、c,已知,且.(1)求的面积;(2)若a、b、c成等差数列,求b的值.22.(10分)已知数列中,,().(1)求证:是等比数列,并求的通项公式;(2)数列满足,求数列的前项和为.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设,用表示出,求得的表达式,结合二次函数的性质求得当时,取得最小值,从而求得点的坐标.【详解】设,则=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以当λ=时,取得最小值,此时==,即点Q的坐标为.故选:C2、A【解析】利用对立事件概率公式可求得所求事件的概率.【详解】由对立事件的概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.3、B【解析】首先求出F1到渐近线的距离,利用F1关于渐近线的对称点恰落在圆上,可得直角三角形,利用勾股定理得到关于ac的齐次式,即可求出双曲线的离心率【详解】由题意可设,则到渐近线的距离为.设关于渐近线的对称点为M,F1M与渐近线交于A,∴MF1=2b,A为F1M的中点.又O是F1P的中点,∴OA∥F2M,∴为直角,所以△为直角三角形,由勾股定理得:,所以,所以,所以离心率故选:B.4、A【解析】根据命题与它的否定命题一真一假,写出该命题的否定命题,再求实数的取值范围【详解】解:命题“,”是假命题,则它的否定命题“,”是真命题,时,不等式为,显然成立;时,应满足,解得,所以实数的取值范围是故选:A5、A【解析】先化简函数表达式,然后再平移即可.【详解】函数的图象向左平移个单位长度后,得到的图象.故选:A6、D【解析】由题意,双曲线的渐近线方程为,∵以这四个交点为顶点的四边形为正方形,其面积为16,故边长为4,∴(2,2)在椭圆C:上,∴,∵,∴,∴,∴∴椭圆方程为:.故选D.考点:椭圆的标准方程及几何性质;双曲线的几何性质.7、C【解析】连接,可得,得到异面直线与所成角即为直线与所成角,设,设,求得的值,在中,利用余弦定理,即可求解.【详解】如图所示,连接,在正方体中,可得,所以异面直线与所成角即为直线与所成角,设,由在长方体中,,,设,可得,在直角中,可得,在中,可得,所以,因为,所以.故选:C.8、B【解析】直接利用正弦定理以及已知条件,求出、、的关系,即可判断三角形的形状【详解】解:在中,已知,,,分别为角,,的对边),由正弦定理可知:,所以,解得,所以为等边三角形故选:【点睛】本题考查三角形的形状的判断,正弦定理的应用,考查计算能力,属于基础题9、D【解析】先求抛物线的方程,再联立直线方程和抛物线方程,由弦长公式可求的最小值.【详解】因为直线为抛物线的准线,故即,故抛物线方程为:.设直线,则,,而,当且仅当等号成立,故的最小值为8,故选:D.10、A【解析】由定义证明函数的单调性,再由函数不等式恒能成立的性质得出,从而得出实数的取值范围.【详解】任取,,即函数在上单调递减,若,使得,则即故选:A【点睛】结论点睛:本题考查不等式恒成立问题,解题关键是转化为求函数的最值,转化时要注意全称量词与存在量词对题意的影响.等价转化如下:(1),,使得成立等价于(2),,不等式恒成立等价于(3),,使得成立等价于(4),,使得成立等价于11、D【解析】分别求出两曲线表示的椭圆的位置,长轴长、短轴长、离心率和焦距,比较可得答案.【详解】曲线表示焦点在x轴上的椭圆,长轴长为10,短轴长为6,离心率为,焦距为8,曲线焦点在x轴上的椭圆,长轴长为,短轴长为,离心率为,焦距为,故选:D12、B【解析】由已知条件得出,结合空间向量数量积的坐标运算可求得实数的值.【详解】因为,则,解得.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、10【解析】采用数形结合法,将所求问题转化为两点到直线的距离和的倍,结合梯形中位线性质和三角形三边关系可求得答案.【详解】由,,,可知,点在圆上,由,即为等腰直角三角形,结合点到直线距离公式可理解为圆心到直线的距离,变形得,即所求问题可转化为两点到直线的距离和的倍,作于于,中点为,中点为,由梯形中位线性质可得,,作于,于,连接,则,当且仅当与重合,三点共线时,有最大值,由点到直线距离公式可得,由几何性质可得,,此时,故的最大值为.故答案为:10.14、【解析】根据二项展开式的通项公式,可知展开式中含的项,以及展开式中含的项,再根据组合数的运算即可求出结果.【详解】解:由题意可得,展开式中含的项为,而展开式中含的项为,所以的系数为.故答案为:.15、,使得【解析】全称命题改否定,首先把全称量词改成特称量词,然后把后面结论改否定即可.【详解】解:因为命题,总有,所以的否定为:,使得故答案为,使得【点睛】本题考查了全称命题的否定,全称命题(特称命题)改否定,首先把全称量词(特称量词)改成特称量词(全称量词),然后把后面结论改否定即可.16、【解析】解方程组可求得定点坐标.【详解】直线方程可化为,由,可得.故直线恒过定点.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)代入点坐标,结合离心率,以及即得解;(2)设直线方程,与椭圆联立,转化为,结合韦达定理和判别式,分析即得解【小问1详解】由题意可知:,解得:椭圆的标准方程为:【小问2详解】①当直线斜率不存在,方程为,则,.②当直线斜率存在时,设直线方程为,联立得:.由得:.设,,则,,又,,,则,,所以,所以,解得:,又,综上所述:的取值范围为.18、(1)或(2)或(3)且【解析】(1)根据直线一般式平行的条件列式计算;(2)根据直线一般式垂直的条件列式计算;(3)根据相交和平行的关系可得答案.【小问1详解】,,解得或又时,直线,,两直线不重合;时,直线,,两直线不重合;故或;【小问2详解】,,解得或;【小问3详解】与相交故由(1)得且.19、(1)3(2)【解析】(1)求出直线与直线的交点坐标,代入直线的方程可得值;(2)设,代入已知等式可求得值,得坐标【小问1详解】由得,即所以,【小问2详解】由(1)直线方程是,在直线上,设,则,解得,所以点坐标为20、(1);(2).【解析】(1)根据,可设,,求出,得到椭圆的方程,代入点的坐标,求出,即可得出结果.(2)设出点,的坐标,直线与椭圆方程联立,利用韦达定理求出弦长,由点到直线的距离公式,三角形的面积公式及基本不等式可得结论.【详解】(1)因为,所以设,,则,椭圆的方程为.代入点的坐标得,,所以椭圆的方程为.(2)设点,的坐标分别为,,由,得,即,,,,.,点到直线的距离,的面积,当且仅当,即时等号成立.所以当时,面积的最大值为.【点睛】本题主要考查了椭圆的标准方程和性质,直线与椭圆相交问题.属于中档题.21、(1);(2).【解析】(1)先利用数量积和余弦值得到,再利用面积公式计算即得结果;(2)根据等差数列得到,再结合余弦定理进行运算得到关于b的关系,求值即可.【详解】(1)由得,所以,所以,所以,所以;(2)因为a、b、c成等差数列,所以,由余弦定理得,即,解得.22、(1)(2)【解析】由已知式子变形可得是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度外派工程师专项劳动合同精要3篇
- 2025年度特许经营权授予与行使合同3篇
- 海南外国语职业学院《交通信息系统》2023-2024学年第一学期期末试卷
- 二零二五年度旅游度假村合作协议范本
- 2025年度绿色蔬菜直销合作协议范本6篇
- 二零二五年度大型超市连锁加盟经营合同2篇
- 二零二五年度教育机构教师兼职工作合同2篇
- 课程设计批阅意见
- 二零二五年度季度销售奖杯采购与市场调研与竞争分析合同3篇
- 二零二五年度ROHS认证服务及产品保证合同模板2篇
- 洁柔形象升级与整合内容营销方案
- 2025届高考数学一轮复习建议 概率与统计专题讲座
- 广东省公务员考试笔试真题及答案
- 吸入疗法在呼吸康复应用中的中国专家共识2022版
- 风险分级管控和隐患排查治理体系培训考试题参考答案
- 部编版二年级下册语文第四单元教学设计含语文园地四
- 江西省第一届职业技能大赛分赛场项目技术文件(世赛选拔)网络安全
- GB/T 18029.22-2024轮椅车第22部分:调节程序
- NB-T32042-2018光伏发电工程建设监理规范
- 垃圾焚烧行业经营分析报告
- 合同审查报告模板
评论
0/150
提交评论