版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省示范中学培优联盟2025届数学高二上期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的右焦点为F,短轴的一个端点为P,直线与椭圆相交于A、B两点.若,点P到直线l的距离不小于,则椭圆C离心率的取值范围为()A. B.C. D.2.随机地向两个标号分别为1与2的格子涂色,涂上红色或绿色,在已知其中一个格子颜色为红色条件下另一个格子颜色也为红色的概率为()A. B.C. D.3.设,则“”是“直线与直线”平行的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件4.如图,直三棱柱的所有棱长均相等,P是侧面内一点,设,若P到平面的距离为2d,则点P的轨迹是()A.圆的一部分 B.椭圆的一部分C.抛物线的一部分 D.双曲线的一部分5.在长方体中,,,则与平面所成的角的正弦值为()A. B.C. D.6.若双曲线经过点,且它的两条渐近线方程是,则双曲线的方程是()A. B.C. D.7.已知,分别是圆和圆上的动点,点在直线上,则的最小值是()A. B.C. D.8.已知双曲线C1的一条渐近线方程为y=kx,离心率为e1,双曲线C2的一条渐近线方程为y=x,离心率为e2,且双曲线C1、C2在第一象限交于点(1,1),则=()A.|k| B.C.1 D.29.某公司有320名员工,将这些员工编号为1,2,3,…,320,从这些员工中使用系统抽样的方法抽取20人进行“学习强国”的问卷调查,若54号被抽到,则下面被抽到的是()A.72号 B.150号C.256号 D.300号10.已知双曲线,则双曲线M的渐近线方程是()A. B.C. D.11.已知直线,若圆C的圆心在轴上,且圆C与直线都相切,求圆C的半径()A. B.C.或 D.12.已知抛物线的焦点为F,,点是抛物线上的动点,则当的值最小时,=()A.1 B.2C. D.4二、填空题:本题共4小题,每小题5分,共20分。13.若向量满足,则_________.14.已知双曲线的左、右焦点分别为,,点是圆上一个动点,且线段的中点在的一条渐近线上,若,则的离心率的取值范围是________15.已知平面的法向量为,平面的法向量为,若,则___________.16.某校对全校共1800名学生进行健康调查,选用分层抽样法抽取一个容量为200的样本,已知女生比男生少抽了20人,则该校的女生人数应是__________人.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列是等差数列,其前n项和为,,,数列满足(且),.(1)求和的通项公式;(2)求数列的前n项和.18.(12分)已知为数列的前项和,且.(1)求的通项公式;(2)若,求的前项和.19.(12分)设等差数列的前项和为,已知,.(1)求数列的通项公式;(2)求数列的前项和.20.(12分)已知函数在其定义域内有两个不同的极值点(1)求a的取值范围;(2)设的两个极值点分别为,证明:21.(12分)已知椭圆的左,右顶点分别是,,且,是椭圆上异于,的不同的两点(1)若,证明:直线必过坐标原点;(2)设点是以为直径的圆和以为直径的圆的另一个交点,记线段的中点为,若,求动点的轨迹方程22.(10分)已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)若,分别为椭圆的上,下顶点,过点且斜率为的直线交椭圆于另一点(异于椭圆的右顶点),交轴于点,直线与直线相交于点.求证:直线的斜率为定值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设椭圆的左焦点为,由题可得,由点P到直线l的距离不小于可得,进而可求的范围,即可得出离心率范围.【详解】设椭圆的左焦点为,P为短轴的上端点,连接,如图所示:由椭圆的对称性可知,A,B关于原点对称,则,又,∴四边形为平行四边形,∴,又,解得:,点P到直线l距离:,解得:,即,∴,∴.故选:D.【点睛】关键点睛:本题考查椭圆离心率的求解,解题的关键是由椭圆定义得出,再根据已知条件得出.2、D【解析】根据古典概型的概率公式即可得出答案.【详解】在已知其中一个格子颜色为红色条件下另一个格子颜色有红色与绿色两种情况,其中一个格子颜色为红色条件下另一个格子颜色也为红色的情况有1种,所以在已知其中一个格子颜色为红色条件下另一个格子颜色也为红色的概率为.故选:D.3、D【解析】由两直线平行确定参数值,根据充分必要条件的定义判断【详解】时,两直线方程分别为,,它们重合,不平行,因此不是充分条件;反之,两直线平行时,,解得或,由上知时,两直线不平行,时,两直线方程分别为,,平行,因此,本题中也不是必要条件故选:D4、B【解析】取的中点,得出平面,作,在直角中,求得,以为原点,为轴,为轴建立平面直角坐标系,求得点的轨迹方程,即可求解.【详解】如图所示,取的中点,连接,得到平行于平面且过点的平面,如图(1)(2)所示,作,则P1与E重合,则,在直角中,可得,在图(3)中,设直三棱柱的所有棱长均为,且,以为原点,为轴,为轴建立平面直角坐标系,则,所以,即所以,整理得,所以点P的轨迹是椭圆的一部分.故选:B.5、D【解析】过点作的垂线,垂足为,由线面垂直判定可知平面,则所求角即为,由长度关系求得即可.【详解】在平面内过点作的垂线,垂足为,连接.,,,平面,平面,的正弦值即为所求角的正弦值,,,.故选:D.6、A【解析】根据双曲线渐近线方程设出方程,再由其过的点即可求解.【详解】渐近线方程是,设双曲线方程为,又因为双曲线经过点,所以有,所以双曲线方程为,化为标准方程为.故选:A7、B【解析】由已知可得,,求得关于直线的对称点为,则,计算即可得出结果.【详解】由题意可知圆的圆心为,半径,圆的圆心为,半径设关于直线的对称点为,则解得,则因为,分别在圆和圆上,所以,,则因为,所以故选:B.8、C【解析】根据渐近线方程设出双曲线方程,再由过点,可知双曲线方程,从而可求离心率.【详解】由题,设双曲线的方程为,又因为其过,且可知,不妨设,代入,得,所以双曲线的方程为,所以,同理可得双曲线的方程为,所以可得,所以,当时,结论依然成立.故选:C9、B【解析】根据系统抽样分成20个小组,每组16人中抽一人,故抽到的序号相差16的整数倍,即可求解.【详解】∵用系统抽样的方法从320名员工中抽取一个容量为20的样本∴,即每隔16人抽取一人∵54号被抽到∴下面被抽到的是54+16×6=150号,而其他选项中的数字不满足与54相差16的整数倍,故答案为:B故选:B10、C【解析】由双曲线的方程直接求出见解析即可.【详解】由双曲线,则其渐近线方程为:故选:C11、C【解析】设出圆心坐标,利用圆心到直线的距离相等列方程,求得圆心坐标并求得圆的半径.【详解】设圆心坐标为,则或,所以圆的半径为或.故选:C12、B【解析】根据抛物线定义,转化,要使有最小值,只需最大,即直线与抛物线相切,联立直线方程与抛物线方程,求出斜率,然后求出点坐标,即可求解.【详解】由题知,抛物线的准线方程为,,过P作垂直于准线于,连接,由抛物线定义知.由正弦函数知,要使最小值,即最小,即最大,即直线斜率最大,即直线与抛物线相切.设所在的直线方程为:,联立抛物线方程:,整理得:则,解得即,解得,代入得或,再利用焦半径公式得故选:B.关键点睛:本题考查抛物线的性质,直线与抛物线的位置关系,解题的关键是要将取最小值转化为直线斜率最大,再转化为抛物线的切线,考查学生的转化思想与运算求解能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题目条件,利用模的平方可以得出答案【详解】∵∴∴.故答案为:.14、【解析】设,,因为点是线段中点,所以有,代入坐标求出点的轨迹为圆,因为点在渐近线上,所以圆与渐近线有公共点,利用点到直线的距离求出临界状态下渐近线的斜率,数形结合求出有公共点时渐近线斜率的范围,从而求出离心率的范围.【详解】解:设,,因为点是线段的中点,所以有,即有,因为点在圆上,所以满足:,代入可得:,即,所以点的轨迹是以为圆心,以1为半径的圆,如图所示:因为点在渐近线上,所以圆与渐近线有公共点,当两条渐近线与圆恰好相切时为临界点,则:圆心到渐近线的距离为,因为,所以,即,且,所以,此时,,当时,渐近线与圆有公共点,.故答案为:.15、2【解析】由,可两平面的法向量也平行,从而可求出,进而可求得答案【详解】因为平面的法向量为,平面的法向量为,,所以∥,所以存实数使,所以,所以,解得,所以,故答案为:216、810【解析】分析:首先确定抽取的女生人数,然后由分层抽样比即可确定女生的人数.详解:设抽取的女生人数为,则:,解得:,则抽取的女生人数为人,抽取的男生人数为人,据此可知该校女生人数应是人.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1);(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)根据,列方程组即可求解数列的通项公式,根据可求数列的通项公式;(2)化简,利用裂项相消法求该数列前n项和.【小问1详解】设等差数列公差为d,∵,∴,∵公差,∴.由得,即,∴数列是首项为,公比为2的等比数列,∴;【小问2详解】∵,∴,.18、(1)(2)【解析】(1)由与的关系结合等比数列的定义得出的通项公式;(2)由(1)得出,再由错位相减法得出的前项和.【小问1详解】因为,所以当时,,所以.当时,,两式相减,得,所以,所以,所以是以1为首项,2为公比的等比数列,所以.【小问2详解】由(1)得,所以,两边同乘以,得,两式相减,得,所以.19、(1)(2)【解析】(1)根据已知条件求得等差数列的首项和公差,由此求得.(2)利用裂项求和法求得.【小问1详解】设等差数列的公差为,则,解得,.∴.【小问2详解】由(1)知.∴.∴.20、(1);(2)证明见解析.【解析】(1)对函数求导,把问题转化为导函数值为0的方程有两个正根,再构造函数求解作答.(2)将所证不等式等价转化,构造函数,利用导数探讨其单调性作答.【小问1详解】函数的定义域为,求导得:,依题意,函数在上有两个不同极值点,于是得有两个不等的正根,令,,则,当时,,当时,,于是得在上单调递增,在上单调递减,,因,恒成立,即当时,的值从递减到0(不能取0),又,有两个不等的正根等价于直线与函数的图象有两个不同的公共点,如图,因此有,所以a取值范围是.【小问2详解】由(1)知分别是方程的两个不等的正根,,即,作差得,则有,原不等式,令,则,于是得,设,则,因此,在单调递增,则有,即成立,所以.【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,构造函数,利用函数思想是解决问题的关键.21、(1)证明见解析;(2).【解析】(1)设,首先证明,从而可得到,即得到;进而可得到四边形为平行四边形;再根据为的中点,即可证明直线必过坐标原点(2)设出直线的方程,与椭圆方程联立,消元,写韦达;根据条件可求出直线MN过定点,从而可得到过定点,进而可得到点在以为直径的圆上运动,从而可求出动点的轨迹方程【小问1详解】设,则,即因为,,所以因为,所以,所以.同理可证.因为,,所以四边形为平行四边形,因为为的中点,所以直线必过坐标原点【小问2详解】当直线的斜率存在时,设直线的方程为,,联立,整理得,则,,.因为,所以,因为,解得或.当时,直线的方程为过点A,不满足题意,所以舍去;所以直线的方程为,所以直线过定点.当直线的斜率不存在时,因为,所以直线的方程为,经验证,符合题意.故直线过定点.因为为的中点,为的中点,所以过定点.因为垂直平分公共弦,所以点在以为直径的圆上运动,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店行业营业员工作总结
- 家禽养殖业的安全管理与保障计划
- 家居装饰品销售感悟总结
- 餐饮行业前台服务总结
- 互联网行业运营技巧总结
- 文化创意产业顾问工作总结
- 钢铁行业会计工作特色
- 印刷行业卫生环保措施
- 妇产科护士总结
- 2024年度新能源发电设备进场安装与维护合同3篇
- Unit 2 How often do you exercise Section A 1a-2d 教学实录 2024-2025学年人教版八年级英语上册
- 2024年公路工程资料归档与承包合同3篇
- 法律逻辑学知到智慧树章节测试课后答案2024年秋西南政法大学
- 山东省临沂市2023-2024学年高二上学期期末学业水平检测历史试题 含答案
- 《中华人民共和国学前教育法》专题培训
- 产品质量培训
- 第四单元《10的再认识》(说课稿)-2024-2025学年一年级上册数学人教版
- 交通事故预防与应急处置考核试卷
- 辐射探测器市场发展前景分析及供需格局研究预测报告
- 成本经理招聘面试题及回答建议(某世界500强集团)2024年
- 小学英语学科校本研修方案
评论
0/150
提交评论