版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届琼山中学高一上数学期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.天文学中为了衡量天体的明暗程度,古希腊天文学家喜帕恰斯(,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,天体就越亮;星等的数值越大,天体就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森()又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述,两颗星的星等与亮度满足(),其中星等为的星的亮度为(,2).已知“心宿二”的星等是1.00,“天津四”的星等是1.25,“心宿二”的亮度是“天津四”的倍,则的近似值为(当较小时,)()A1.23 B.1.26C.1.51 D.1.572.某食品的保鲜时间(单位:小时)与储存温度(单位:)满足函数关系(为自然对数的底数,为常数)若该食品在的保鲜时间是384小时,在的保鲜时间是24小时,则该食品在的保险时间是()小时A.6 B.12C.18 D.243.已知直线与平行,则实数的取值是A.-1或2 B.0或1C.-1 D.24.设全集,,,则如图阴影部分表示的集合为()A. B.C. D.5.已知命题“,使”是假命题,则实数的取值范围是()A. B.C. D.6.已知是上的偶函数,在上单调递增,且,则下列不等式成立的是()A. B.C. D.7.已知函数,若,,,则,,的大小关系为A. B.C. D.8.已知sin(α-π)+cos(π-α)A.-2 B.2C.-3 D.39.已知函数为偶函数,在单调递减,且在该区间上没有零点,则的取值范围为()A. B.C. D.10.若,,,则a,b,c的大小关系是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数是定义在上的偶函数,当时,.则当时,______,若,则实数的取值范围是_______.12.若函数,则函数的值域为___________.13.已知是定义在上的偶函数,并满足:,当,,则___________.14.若函数的图象关于直线对称,则的最小值是________.15.已知,则__________.16.已知定义在上的函数满足:①;②在区间上单调递减;③的图象关于直线对称,则的解析式可以是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)在①,②这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,,求的值域.注:如果选择两个条件分别解答,按第一个解答计分.(2)若,,,求的取值范围.18.函数的定义域,且满足对于任意,有(1)求的值(2)判断的奇偶性,并证明(3)如果,且在上是增函数,求的取值范围19.如图,直三棱柱ABC﹣A1B1C1中,M,N分别为棱AC和A1B1的中点,且AB=BC(1)求证:平面BMN⊥平面ACC1A1;(2)求证:MN∥平面BCC1B120.已知四棱锥P-ABCD的体积为,其三视图如图所示,其中正视图为等腰三角形,侧视图为直角三角形,俯视图是直角梯形.(1)求正视图的面积;(2)求四棱锥P-ABCD的侧面积.21.设圆的圆心在轴上,并且过两点.(1)求圆的方程;(2)设直线与圆交于两点,那么以为直径的圆能否经过原点,若能,请求出直线的方程;若不能,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据题意列出方程,结合对数式与指数式的互化以及对数运算性质即可求解.【详解】设“心宿二”的星等为,“天津四”的星等为,“心宿二”和“天津四”的亮度分别为,,,,,所以,所以,所以,所以与最接近的是1.26,故选:B.2、A【解析】先阅读题意,再结合指数运算即可得解.【详解】解:由题意有,,则,即,则,即该食品在的保险时间是6小时,故选A.【点睛】本题考查了指数幂的运算,重点考查了解决实际问题的能力,属基础题.3、C【解析】因为两直线的斜率都存在,由与平行得,当时,两直线重合,,故选C.4、D【解析】解出集合、,然后利用图中阴影部分所表示的集合的含义得出结果.【详解】,.图中阴影部分所表示的集合为且.故选:D.【点睛】本题考查韦恩图表示的集合的求解,同时也考查了一元二次不等式的解法,解题的关键就是弄清楚阴影部分所表示的集合的含义,考查运算求解能力,属于基础题.5、B【解析】原命题等价于恒成立,故即可,解出不等式即可.【详解】因为命题“,使”是假命题,所以恒成立,所以,解得,故实数的取值范围是故选:B6、B【解析】根据函数的奇偶性和函数的单调性判断函数值的大小即可.【详解】因为是上的偶函数,在上单调递增,所以在上单调递减,.又因为,因为,在上单调递减,所以,即.故选:B.7、C【解析】根据函数解析式先判断函数的单调性和奇偶性,然后根据指数和对数的运算法则进行化简即可【详解】∵f(x)=x3,∴函数f(x)是奇函数,且函数为增函数,a=﹣f(log3)=﹣f(﹣log310)=f(log310),则2<log39.1<log310,20.9<2,即20.9<log39.1<log310,则f(209)<f(log39.1)<f(log310),即c<b<a,故选C【点睛】本题主要考查函数值的大小的比较,根据函数解析式判断函数的单调性和奇偶性是解决本题的关键8、B【解析】应用诱导公式及正余弦的齐次式,将题设等式转化为-tanα-1【详解】sin(α-π)+∴-tanα-1=-3tan故选:B.9、D【解析】根据函数为偶函数,得到,再根据函数在单调递减,且在该区间上没有零点,由求解.【详解】因为函数为偶函数,所以,由,得,因为函数在单调递减,且在该区间上没有零点,所以,解得,所以的取值范围为,故选:D10、C【解析】由题意,根据实数指数函数性质,可得,根据对数的运算性质,可得,即可得到答案.【详解】由题意,根据实数指数函数的性质,可得,根据对数的运算性质,可得;故选C【点睛】本题主要考查了指数函数与对数函数的运算性质的应用,其中解答中合理运用指数函数和对数函数的运算性质,合理得到的取值范围是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】根据给定条件利用偶函数的定义即可求出时解析式;再借助函数在单调性即可求解作答.【详解】因函数是定义在上的偶函数,且当时,,则当时,,,所以当时,;依题意,在上单调递增,则,解得,所以实数的取值范围是.故答案为:;12、【解析】求出函数的定义域,进而求出的范围,利用换元法即可求出函数的值域.【详解】由已知函数的定义域为又,定义域需满足,令,因为,所以,利用二次函数的性质知,函数的值域为故答案为:.13、5【解析】根据可得周期,再结合偶函数,可将中的转化到内,可得的值.【详解】因为,所以,所以,即函数的一个周期为4,所以,又因为是定义在上的偶函数,所以,因当,,所以,所以.故答案为:2.5.14、【解析】根据正弦函数图象的对称性求解.【详解】依题意可知,得,所以,故当时,取得最小值.故答案为:.【点睛】本题考查三角函数的对称性.正弦函数的对称轴方程是,对称中心是15、3【解析】由同角三角函数商数关系及已知等式可得,应用诱导公式有,即可求值.【详解】由题设,,可得,∴.故答案为:316、(答案不唯一)【解析】取,结合二次函数的基本性质逐项验证可得结论.【详解】取,则,满足①,在区间上单调递减,满足②,的图象关于直线对称,满足③.故答案为:(答案不唯一).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)【解析】(1)根据复合函数的性质即可得到的值域;(2)令,求出其最小值,则问题转化为恒成立,进而求最小值即可.【小问1详解】选择①,,令,则,故函数的值域为R,即的值域为R.选择②,,令,则,因为函数单调递增,所以,即的值域为.【小问2详解】令.当时,,,;当时,,,.因为,所以的最小值为0,所以,即.令,则,所以,故,即的取值范围为.18、(1)0;(2)偶函数;(3)见解析【解析】(1)令,代入,即可求出结果;(2)先求出,再由,即可判断出结果;(3)先由,求出,将不等式化为,根据函数在上是增函数,分和两种情况讨论,即可得出结果.【详解】(1)因为对于任意,有,令,则,所以;(2)令,则,所以,令,则,所以函数为偶函数;(3)因为,所以,所以不等式可化为;又因为在上是增函数,而函数为偶函数,所以或;当时,或;当时,或;综上,当时,的取值范围为或;当时,的取值范围为或.【点睛】本题主要考查函数奇偶性与单调性的综合,以及抽象函数及其应用,常用赋值法求函数值,属于常考题型.19、(1)见解析;(2)见解析【解析】(1)由面面垂直的性质定理证明平面,再由面面垂直的判定定理得证面面垂直;(2)取BC中点P,连接B1P和MP,可证MN∥PB1,从而可证线面平行【详解】(1)因为M为棱AC的中点,且AB=BC,所以BM⊥AC,又因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥平面ABC因为BM⊂平面ABC,所以AA1⊥BM又因为AC,A1A⊂平面ACC1A1且AC∩A1A=A,所以BM⊥平面ACC1A1因为BM⊂平面BMN,所以:平面BMN⊥平面ACC1A1(2)取BC的中点P,连接B1P和MP,因为M、P为棱AC、BC的中点,所以MP∥AB,且MPAB,因为ABC﹣A1B1C1是直三棱柱,所以A1B1∥AB,A1B1=AB因为N为棱A1B1的中点,所以B1N∥BA,且B1NBA;所以B1N∥PM,且B1N=PM;所以MNB1P是平行四边形,所以MN∥PB1又因为MN⊄平面BCC,PB1⊂平面BCC1B1所以MN∥平面BCC1B1【点睛】本题考查证明面面垂直与线面平行,掌握它们的判定定理是解题关键.立体几何证明中,要由定理得出结论,必须满足定理的所有条件,缺一不可.有些不明显的结论需要证明,明显的结论也要列举出来,否则证明过程不完整20、(1);(2)【解析】(1)根据四棱锥的体积得PA=,进而得正视图的面积;(2)过A作AE∥CD交BC于E,连接PE,确定四个侧面积面积S△PAB,S△PAD,S△PCD,S△PBC求和即可.试题解析:(1)如图所示四棱锥P-ABCD的高为PA,底面积为S=·CD=×1=∴四棱锥P-ABCD的体积V四棱锥P-ABCD=S·PA=×·PA=,∴PA=∴正视图的面积为S=×2×=.(2)如图所示,过A作AE∥CD交BC于E,连接PE.根据三视图可知,E是BC的中点,且BE=CE=1,AE=CD=1,且BC⊥AE,AB=又PA⊥平面ABCD,∴PA⊥BC,PA⊥DC,PD=,∴BC⊥面PAE,∴BC⊥PE,又DC⊥AD,∴DC⊥面PAD,∴DC⊥PD,且PA⊥平面ABCD.∴PA⊥AE,∴PE2=PA2+AE2=3.∴PE=.∴四棱锥P-ABCD的侧面积为S=S△PAB+S△PAD+S△PCD+S△PBC=··+··1+·1·+·2·=.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.21、(1)(2)或.【解析】(1)圆的圆心在的垂直平分线上,又的中点为,,∴的中垂线为.∵圆的圆心在轴上,∴圆的圆心为,因此,圆的半径,(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 楼房建筑招标合同范例
- 监理合同补充合同范例
- 2024年度工程建设合同标的及付款方式
- 永久耕地出租合同模板
- 测绘员工合同范例
- 医疗设备招标合同范例
- 烘焙物料采购合同模板
- 2024年度供应链合同物流配送方案
- 2024年度企业市场营销策略与实施合同
- 2024年度出租厂房合同范本
- 【苏教版】一年级数学下册《期末试卷》
- DB14T 1950-2019 矿山地质环境调查规范
- 碎石组织供应及运输售后服务保障方案
- 幼儿园小班区域标识图
- 老年大学课件
- 2022年储能行业之电化学储能电站收益测算报告
- 阿里城市大脑解决方案
- 五年级上册数学教案-平行四边形的认识- 沪教版
- DBJ50∕T-337-2019 装配式隔墙技术标准
- 顺应大势精进自身Fanuc的崛起之道
- 中国房颤中心建设的背景和意义(PPT 16页)
评论
0/150
提交评论