版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽合肥八中2025届数学高一上期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点A(3,4)且与直线l:x﹣2y﹣1=0垂直的直线的方程是A.2x+y﹣10=0 B.x+2y﹣11=0C.x﹣2y+5=0 D.x﹣2y﹣5=02.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程看作时间的函数,其图象可能是A. B.C. D.3.已知幂函数在上单调递减,则的值为A. B.C.或 D.4.已知命题:,总有,则命题的否定为()A.,使得 B.,使得C.,总有 D.,总有5.如果直线和同时平行于直线x-2y+3=0,则a,b的值为A.a= B.a=C.a= D.a=6.半径为2,圆心角为的扇形的面积为()A. B.C. D.27.已知向量=(1,2),=(2,x),若⊥,则|2+|=()A. B.4C.5 D.8.若条件p:,q:,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既非充分也非必要条件9.若命题“”是命题“”的充分不必要条件,则的取值范围是()A. B.C. D.10.设是周期为的奇函数,当时,,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若幂函数的图象过点,则______.12.函数(其中,,)的图象如图所示,则函数的解析式为__________13.将函数的图象向右平移个单位,再将图象上每一点的横坐标缩短到原来的倍,得到函数的图象,则函数的解析式为____________14.直线l过点P(-1,2)且到点A(2,3)和点B(-4,5)的距离相等,则直线l的方程为____________15.计算______16.若,则_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.(1)求的值;(2)求的值.18.已知角的终边经过点,试求:(1)tan的值;(2)的值.19.(1)已知,且,求的值(2)已知,是关于x的方程的两个实根,且,求的值20.设函数当时,求函数的零点;若,当时,求x的取值范围21.已知函数(1)若为偶函数,求;(2)若命题“,”为假命题,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】依题意,设所求直线的一般式方程为,把点坐标代入求解,从而求出一般式方程.【详解】设经过点且垂直于直线的直线的一般式方程为,把点坐标代入可得:,解得,所求直线方程为:.故选:A【点睛】本题考查了直线的方程、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于基础题.2、A【解析】汽车启动加速过程,随时间增加路程增加的越来越快,汉使图像是凹形,然后匀速运动,路程是均匀增加即函数图像是直线,最后减速并停止,其路程仍在增加,只是增加的越来越慢即函数图像是凸形.故选A考点:函数图像的特征3、A【解析】由函数为幂函数得,即,解得或.当时,,符合题意.当时,,不和题意综上.选A4、B【解析】根据全称命题的否定性质进行判断即可.【详解】因为全称命题的否定是特称命题,所以命题的否定为,使得,故选:B5、A【解析】由两直线平行时满足的条件,列出关于方程,求出方程的解即可得到的值.【详解】直线和同时平行于直线,,解得,故选A.【点睛】本题主要考查两条直线平行的充要条件,意在考查对基础知识的理解与应用,属于基础题.6、D【解析】利用扇形的面积公式即得.【详解】由题可得.故选:D7、C【解析】根据求出x的值,再利用向量的运算求出的坐标,最后利用模长公式即可求出答案【详解】因为,所以解得,所以,因此,故选C【点睛】本题主要考查向量的坐标预算以及模长求解,还有就是关于向量垂直的判定与性质8、B【解析】由条件推结论可判断充分性,由结论推条件可判断必要性【详解】由不能推出,例如,但必有,所以p是q成立的必要不充分条件.故选:B.9、C【解析】解不等式得,进而根据题意得集合是集合的真子集,再根据集合关系求解即可.【详解】解:解不等式得,因为命题“”是命题“”的充分不必要条件,所以集合是集合的真子集,所以故选:C10、A【解析】根据f(x)是奇函数可得f(﹣)=﹣f(),再根据f(x)是周期函数,周期为2,可得f()=f(﹣4)=f(),再代入0≤x≤1时,f(x)=2x(1﹣x),进行求解.【详解】∵设f(x)是周期为2的奇函数,∴f(﹣x)=﹣f(x),∵f(﹣)=﹣f(),∵T=2,∴f()=f(﹣4)=f(),∵当0≤x≤1时,f(x)=2x(1﹣x),∴f()=2×(1﹣)=,∴f(﹣)=﹣f()=﹣f()=﹣,故选A【点睛】此题主要考查周期函数和奇函数的性质及其应用,注意所求值需要利用周期进行调节,此题是一道基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设,将点代入函数的解析式,求出实数的值,即可求出的值.【详解】设,则,得,,因此,.故答案为.【点睛】本题考查幂函数值的计算,解题的关键就是求出幂函数的解析式,考查运算求解能力,属于基础题.12、【解析】如图可知函数的最大值,当时,代入,,当时,代入,,解得则函数的解析式为13、【解析】利用函数的图象变换规律,即可得到的解析式【详解】函数的图象向右平移个单位,可得到,再将图象上每一点的横坐标缩短到原来的倍,可得到.故.【点睛】本题考查了三角函数图象的平移变换,属于基础题14、x+3y-5=0或x=-1【解析】当直线l为x=﹣1时,满足条件,因此直线l方程可以为x=﹣1当直线l的斜率存在时,设直线l的方程为:y﹣2=k(x+1),化为:kx﹣y+k+2=0,则,化为:3k﹣1=±(3k+3),解得k=﹣∴直线l的方程为:y﹣2=﹣(x+1),化为:x+3y﹣5=0综上可得:直线l的方程为:x+3y﹣5=0或x=﹣1故答案为x+3y﹣5=0或x=﹣115、11【解析】进行分数指数幂和对数式的运算即可【详解】原式故答案为11【点睛】本题考查对数式和分数指数幂的运算,熟记运算性质,准确计算是关键,是基础题.16、【解析】首先求函数,再求的值.【详解】设,则所以,即,,.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用诱导公式直接化简即可,然后弦化切;(2)由(1)知,,对齐次式进行弦化切求值.【详解】(1)∵而,∴∵,∴,∴,∴.(2)..【点睛】利用三角公式求三角函数值的关键:(1)角的范围的判断;(2)选择合适的公式进行化简求值18、(1);(2).【解析】(1)根据特殊角的三角函数值,结合正切函数的定义进行求解即可;(2)利用同角的三角函数关系式进行求解即可.【小问1详解】∵,,∴点P的坐标为(1,3),由三角函数的定义可得:;【小问2详解】.19、(1);(2)【解析】(1)先求出角,利用诱导公式即可求出;(2)利用根与系数关系求出,得到,利用切化弦和二倍角公式即可求解.【详解】(1)因为,所以由,得,即所以(2)由题意得因为且,所以解得,所以则,即20、(1);(2).【解析】由分段函数解析式可得时无零点;讨论,,解方程即可得到所求零点;求得的解析式,讨论,,解不等式组即可得到所求范围【详解】解:函数,可得时,无解;当时,无解;当时,即,可得;综上可得时,无零点;时,零点为;,,当时,即有或,可得或且,综上可得x的范围是【点睛】本题考查分段函数、函数零点和解不等式等知识,属于中档题21、(1)(2)【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度VIP会员高端健身与美容服务协议3篇
- 二零二四天津住宅装修工程安全文明施工合同3篇
- 2024版牛肉进口商业交易协议细则版
- 2024老旧仓库创意产业园区开发协议
- 2025年度承兑汇票担保与银行间市场利率衍生品合同3篇
- 二零二五版9A文条款离婚协议律师代理服务合同3篇
- 基于2025年度需求的全息标识牌制作与安装合同3篇
- 二零二五年高端葡萄酒进口与代理合同2篇
- 2025年度林木种质资源保护与利用合同范本4篇
- 2025年度绿色建筑节能改造分包合同低碳环保2篇
- 国家自然科学基金项目申请书
- 电力电缆故障分析报告
- 中国电信网络资源管理系统介绍
- 2024年浙江首考高考选考技术试卷试题真题(答案详解)
- 《品牌形象设计》课件
- 仓库管理基础知识培训课件1
- 药品的收货与验收培训课件
- GH-T 1388-2022 脱水大蒜标准规范
- 高中英语人教版必修第一二册语境记单词清单
- 政府机关保洁服务投标方案(技术方案)
- HIV感染者合并慢性肾病的治疗指南
评论
0/150
提交评论