2025届贵州省平坝县新启航教育高二数学第一学期期末监测试题含解析_第1页
2025届贵州省平坝县新启航教育高二数学第一学期期末监测试题含解析_第2页
2025届贵州省平坝县新启航教育高二数学第一学期期末监测试题含解析_第3页
2025届贵州省平坝县新启航教育高二数学第一学期期末监测试题含解析_第4页
2025届贵州省平坝县新启航教育高二数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届贵州省平坝县新启航教育高二数学第一学期期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线与圆的位置关系是()A.相交 B.相切C.相离 D.相交或相切2.若,则的虚部为()A. B.C. D.3.已知双曲线的离心率为5,则其标准方程为()A. B.C. D.4.在等差数列中,,且,,,构成等比数列,则公差()A.0或2 B.2C.0 D.0或5.如果向量,,共面,则实数的值是()A. B.C. D.6.已知实数,满足不等式组,若,则的最小值为()A. B.C. D.7.雅言传承文明,经典浸润人生.某市举办“中华经典诵写讲大赛”,大赛分为四类:“诵读中国”经典诵读大赛、“诗教中国”诗词讲解大赛、“笔墨中国”汉字书写大赛、“印记中国”学生篆刻大赛.某人决定从这四类比赛中任选两类参赛,则“诵读中国”被选中的概率为()A. B.C. D.8.若随机事件满足,,,则事件与的关系是()A.互斥 B.相互独立C.互为对立 D.互斥且独立9.过点且与椭圆有相同焦点的双曲线方程为()A B.C. D.10.已知是定义在上的奇函数,对任意两个不相等的正数、都有,记,,,则()A. B.C. D.11.关于的不等式的解集为,则关于的不等式的解集为A. B.C. D.12.抛物线的准线方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的导函数为,且对任意,,若,,则的取值范围是___________.14.已知双曲线:的左、右焦点分别为,,为的右支上一点,且,则的离心率为___________.15.当为任意实数时,直线恒过定点,则以点C为圆心,半径为圆的标准方程______16.某学校要从6名男生和4名女生中选出3人担任进博会志愿者,则所选3人中男女生都有的概率为___________.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,四边形为正方形,已知平面,且,E为中点(1)证明:平面;(2)证明:平面平面18.(12分)已知椭圆C:,斜率为的直线l与椭圆C交于A、B两点且(1)求椭圆C的离心率;(2)求直线l方程19.(12分)已知等比数列的首项,公比,在中每相邻两项之间都插入3个正数,使它们和原数列的数一起构成一个新的等比数列.(1)求数列的通项公式;(2)记数列前n项的乘积为,试问:是否有最大值?如果是,请求出此时n以及最大值;若不是,请说明理由.20.(12分)已知,直线过且与交于两点,过点作直线的平行线交于点(1)求证:为定值,并求点的轨迹的方程;(2)设动直线与相切于点,且与直线交于点,在轴上是否存在定点,使得以为直径的圆恒过定点?若存在,求出的坐标;若不存在,说明理由21.(12分)某中学共有名学生,其中高一年级有名学生,为了解学生的睡眠情况,用分层抽样的方法,在三个年级中抽取了名学生,依据每名学生的睡眠时间(单位:小时),绘制出了如图所示的频率分布直方图.(1)求样本中高一年级学生人数及图中的值;(2)估计样本数据的中位数(保留两位小数);(3)估计全校睡眠时间超过个小时的学生人数.22.(10分)已知圆内有一点,过点P作直线l交圆C于A,B两点.(1)当P为弦的中点时,求直线l的方程;(2)若直线l与直线平行,求弦的长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由直线恒过定点,且定点圆内,从而即可判断直线与圆相交.【详解】解:因为直线恒过定点,而,所以定点在圆内,所以直线与圆相交,故选:A.2、A【解析】根据复数的运算化简,由复数概念即可求解.【详解】因为,所以的虚部为,故选:A3、D【解析】双曲线离心率公式和a、b、c的关系即可求得m,从而得到双曲线的标准方程.【详解】∵双曲线,∴,又,∴,∵离心率为,∴,解得,∴双曲线方程.故选:D.4、A【解析】根据等比中项的性质和等差数列的通项公式建立方程,可解得公差d得选项.【详解】解:因为在等差数列中,,且,,,构成等比数列,所以,即,所以,解得或,故选:A.5、B【解析】设,由空间向量的坐标运算可得出方程组,即可解得的值.【详解】由于向量,,共面,设,可得,解得.故选:B.6、B【解析】作出不等式组对应的平面区域,然后根据线性规划的几何意义求得答案.【详解】作出不等式组所对应的可行域如图三角形阴影部分,平行移动直线直线,可以看到当移动过点A时,在y轴上的截距最小,联立,解得,当且仅当动直线即过点时,取得最小值为,故选:B7、B【解析】由已知条件得基本事件总数为种,符合条件的事件数为3中,由古典概型公式直接计算即可.【详解】从四类比赛中选两类参赛,共有种选择,其中“诵读中国”被选中的情况有3种,即“诵读中国”和“诗教中国”,“诵读中国”和“笔墨中国”,“诵读中国”和“印记中国”,由古典概型公式可得,故选:.8、B【解析】利用独立事件,互斥事件和对立事件的定义判断即可【详解】解:因为,,又因为,所以有,所以事件与相互独立,不互斥也不对立故选:B.9、D【解析】设双曲线的方程为,再代点解方程即得解.【详解】解:由得,所以椭圆的焦点为.设双曲线的方程为,因为双曲线过点,所以.所以双曲线的方程为.故选:D10、A【解析】由题,可得是定义在上的偶函数,且在上单调递减,在上单调递增,根据函数的单调性,即可判断出的大小关系.【详解】设,由题,得,即,所以函数在上单调递减,因为是定义在R上的奇函数,所以是定义在上的偶函数,因此,,,即.故选:A【点睛】本题主要考查利用函数的单调性判断大小的问题,其中涉及到构造函数的运用.11、B【解析】设,解集为所以二次函数图像开口向下,且与交点为,由韦达定理得所以的解集为,故选B.12、D【解析】将抛物线的方程化为标准方程,可得出该抛物线的准线方程.【详解】抛物线的标准方程为,则,可得,因此,该抛物线的准线方程为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】构造函数,利用导数分析函数的单调性,将所求不等式变形为,结合函数的单调性可得解.【详解】构造函数,则,故函数在上单调递减,由已知可得,由可得,可得.故答案为:.14、【解析】由双曲线定义可得a,代入点P坐标可得b,然后可解.【详解】由题知,故,又点在双曲线上,所以,解得,所以.故答案为:15、【解析】先求得直线过的定点C,再写出圆的标准方程.【详解】直线可化为,则,解得,所以直线恒过定点,所以以点C为圆心,半径为圆的标准方程是,故答案为:16、##0.8【解析】由排列组合知识求得所选3人中男女生都有方法数及总的选取方法数后可计算概率【详解】从6名男生和4名女生中选出3人的方法数是,所选3人中男女生都有的方法数为,所以概率为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】(1)设与交于点,连结,易证,再利用线面平行的判断定理即可证得答案;(2)利用线面垂直的判定定理可得平面,再由面面垂直的判断定理即可.【小问1详解】连接交于,连接因为底面是正方形,所以为中点,因为在中,是的中点,所以,因为平面平面,所以平面【小问2详解】侧棱底面底面,所以,因为底面是正方形,所以,因为与为平面内两条相交直线,所以平面,因为平面,所以平面平面.18、(1)(2)或【解析】(1)将椭圆化为标准方程,求得,进而求得离心率;(2)设直线,,,与椭圆联立,借助韦达定理及弦长公式求得,从而求得直线方程.【小问1详解】由题知,椭圆C:,则,离心率【小问2详解】设直线,,联立,化简得,则,解得,,由弦长公式知,,解得,故直线或19、(1)(2)当或时,有最大值.【解析】(1)利用等比数列通项公式求解即可;(2)求出数列的前n项的乘积为,利用二次函数的性质求最值即可.【小问1详解】由已知得,数列首项,,设数列的公比为,即∴即,【小问2详解】,即当或5时,有最大值.20、(1)证明见解析,()(2)存在,【解析】(1)根据题意和椭圆的定义可知点的轨迹是以A,为焦点的椭圆,且,,进而得出椭圆标准方程;(2)设,联立动直线方程和椭圆方程并消元得出关于的一元二次方程,根据根的判别式可得点P和Q的坐标,结合,利用平面向量的坐标表示列出方程组,即可解出点M的坐标.【小问1详解】圆A:,∵,∴,又,∴∴,∴,故∴点的轨迹是以A,为焦点的椭圆,且,∴,故:();【小问2详解】由,得∴,故,设,则,,故,,由可得:由对,恒成立∴故存在使得以为直径的圆恒过定点21、(1)样本中高一年级学生的人数为,;(2);(3).【解析】(1)利用分层抽样可求得样本中高一年级学生的人数,利用频率直方图中所有矩形的面积之和为可求得的值;(2)利用中位数左边的矩形面积之和为可求得中位数的值;(3)利用频率分布直方图可计算出全校睡眠时间超过个小时的学生人数.【小问1详解】解:样本中高一年级学生的人数为.,解得.【小问2详解】解:设中位数为,前两个矩形的面积之和为,前三个矩形的面积之和为,所以,则,得,故样本数据的中位数约为.【小问3详解】解:由图可知,样本数据落在的频

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论