版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省罗源一中高二数学第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点是椭圆上一点,点,则的最小值为A. B.C. D.2.设是双曲线的一个焦点,,是的两个顶点,上存在一点,使得与以为直径的圆相切于,且是线段的中点,则的渐近线方程为A. B.C. D.3.下列命题错误的是()A,B.命题“”的否定是“”C.设,则“且”是“”的必要不充分条件D.设,则“”是“”的必要不充分条件4.若,,,则a,b,c与1的大小关系是()A. B.C. D.5.给出下列结论:①如果数据的平均数为3,方差为0.2,则的平均数和方差分别为14和1.8;②若两个变量的线性相关性越强,则相关系数r的值越接近于1.③对A、B、C三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为30.则正确的个数是().A.3 B.2C.1 D.06.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中偶数的个数为()A.24 B.18C.12 D.67.用1,2,3,4这4个数字可写出()个没有重复数字的三位数A.24 B.12C.81 D.648.是等差数列,,,的第()项A.98 B.99C.100 D.1019.已知函数在上单调递增,则实数a的取值范围为()A. B.C. D.10.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.11.已知空间中四点,,,,则点D到平面ABC的距离为()A. B.C. D.012.已知空间、、、四点共面,且其中任意三点均不共线,设为空间中任意一点,若,则()A.2 B.C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.等差数列,的前项和分别为,,且,则______.14.若直线与直线相互平行,则实数___________.15.数列满足,,其前n项积为,则______16.抛物线的焦点到准线的距离等于__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的中心在原点,焦点为,,且长轴长为4.(1)求椭圆的方程;(2)直线与椭圆相交于A,两点,求弦长.18.(12分)已知圆,直线(1)当直线与圆相交,求的取值范围;(2)当直线与圆相交于、两点,且时,求直线的方程19.(12分)求适合下列条件的曲线的标准方程:(1),焦点在轴上的双曲线的标准方程;(2)焦点在轴上,且焦点到准线的距离是2的抛物线的标准方程20.(12分)记是等差数列的前项和,若.(1)求数列的通项公式;(2)求使成立的的最小值.21.(12分)已知直线l:,圆C:.(1)当时,试判断直线l与圆C的位置关系,并说明理由;(2)若直线l被圆C截得的弦长恰好为,求k的值.22.(10分)已知函数.(1)求函数f(x)的最小正周期;(2)当时,求函数f(x)的值域.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设,则,.所以当时,的最小值为.故选D.2、C【解析】根据图形的几何特性转化成双曲线的之间的关系求解.【详解】设另一焦点为,连接,由于是圆的切线,则,且,又是的中点,则是的中位线,则,且,由双曲线定义可知,由勾股定理知,,,即,渐近线方程为,所以渐近线方程为故选C.【点睛】本题考查双曲线的简单的几何性质,属于中档题.3、C【解析】根据题意,对四个选项一一进行分析,举出例子当时,,即可判断A选项;根据特称命题的否定为全称命题,可判断B选项;根据充分条件和必要条件的定义,即可判断CD选项.【详解】解:对于A,当时,,,故A正确;对于B,根据特称命题的否定为全称命题,得“”的否定是“”,故B正确;对于C,当且时,成立;当时,却不一定有且,如,因此“且”是“”的充分不必要条件,故C错误;对于D,因为当时,有可能等于0,当时,必有,所以“”是“”的必要不充分条件,故D正确.故选:C.4、C【解析】根据条件构造函数,并求其导数,判断该函数的单调性,据此作出该函数的大致图象,由图象可判断a,b,c与1的大小关系.【详解】令,则当时,,当时,即函数在上单调递减,在上单调递增,而,由可知,故作出函数大致图象如图:由图象易知,,故选:C.5、B【解析】对结论逐一判断【详解】对于①,则的平均数为,方差为,故①正确对于②,若两个变量的线性相关性越强,则相关系数r的绝对值越接近于1,故②错误对于③,对A、B、C三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为,故③正确故正确结论为2个故选:B6、C【解析】根据题意,结合计数原理中的分步计算,以及排列组合公式,即可求解.【详解】根据题意,要使组成无重复数字的三位数为偶数,则从0,2中选一个数字为个位数,有种可能,从1,3,5中选两个数字为十位数和百位数,有种可能,故这个无重复数字的三位数为偶数的个数为.故选:C.7、A【解析】由题意,从4个数中选出3个数出来全排列即可.【详解】由题意,从4个数中选出3个数出来全排列,共可写出个三位数.故选:A8、C【解析】等差数列,,中,,,由此求出,令,得到是这个数列的第100项【详解】解:等差数列,,中,,令,得是这个数列的第100项故选:C9、D【解析】根据题意参变分离得到,求出的最小值,进而求出实数a的取值范围.【详解】由题意得:在上恒成立,即,其中在处取得最小值,,所以,解得:,故选:D10、A【解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,,即,故选A【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来11、C【解析】根据题意,求得平面的一个法向量,结合距离公式,即可求解.【详解】由题意,空间中四点,,,,可得,设平面的法向量为,则,令,可得,所以,所以点D到平面ABC的距离为.故选:C.12、B【解析】根据空间四点共面的充要条件代入即可解决.【详解】,即整理得由、、、四点共面,且其中任意三点均不共线,可得,解之得故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】取,代入计算得到答案.【详解】,当时故答案为【点睛】本题考查了前项和和通项的关系,取是解题的关键.14、##【解析】由题意可得,从而可求出的值【详解】因为直线与直线相互平行,所以,解得,故答案为:15、【解析】根据数列的项的周期性,去求的值即可解决.【详解】由,,可得,,,,,,由此可知数列的项具有周期性,且周期为4,第一周期内的四项之积为1,所以数列的前2022项之积为故答案为:16、【解析】先将抛物线方程,转化为标准方程,求得焦点坐标,准线方程即可.【详解】因为抛物线方程是,转化为标准方程得:,所以抛物线开口方向向右,焦点坐标准线方程为:,所以焦点到准线的距离等于.故答案为:【点睛】本题主要考查抛物线的标准方程,还考查了理解辨析的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由已知直接可得;(2)联立方程组求出A,两点坐标,再由两点间距离公式可得.【小问1详解】∵椭圆的中心在原点,焦点为,且长轴长为4,,,,故椭圆的方程为;【小问2详解】设,联立解得和,,∴弦长.18、(1);(2)或【解析】(1)根据直线与圆的位置关系,利用几何法可得出关于实数的不等式,由此可解得实数的取值范围;(2)根据勾股定理求出圆心到直线的距离,再利用点到直线的距离公式可得出关于实数的值,即可求出直线的方程.【小问1详解】解:圆的标准方程为,圆心为,半径为,因为直线与圆相交,则,解得.【小问2详解】解:因为,则圆心到直线的距离为,由点到直线的距离公式可得,整理得,解得或.所以,直线的方程为或.19、(1);(2)或【解析】(1)设方程为(,),即得解;(2)由题得,即得解.【详解】(1)解:由题意,设方程为(,),,,,,所以双曲线的标准方程是(2)焦点到准线的距离是2,,∴当焦点在轴上时,抛物线的标准方程为或20、(1)(2)4【解析】(1)根据题意得,解方程得,进而得通项公式;(2)由题知,进而解不等式得或,再根据即可得答案.【小问1详解】设等差数列的公差为,由得=0,由题意知,,解得,所以d=2所以.小问2详解】解:由(1)可得,由可得,即,解得或,因为,所以,正整数的最小值为.21、(1)相离,理由见解析;(2)0或【解析】(1)求出圆心到直线的距
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国奶茶产品市场规模分析及投资前景规划研究报告
- 2024-2030年中国大口徑HDPE水管项目投资风险分析报告
- 2024-2030年中国商品防伪标签市场竞争状况及投资趋势分析报告
- 2024-2030年中国印刷滚筒抹布资金申请报告
- 2024年水利水电施工环保责任承诺书3篇
- 2024年度图书印刷与网络销售渠道合作合同2篇
- 2024年版车位独家销售代理协议版B版
- 眉山药科职业学院《生物化学(B类)》2023-2024学年第一学期期末试卷
- 2024年生物科技研究与发展合同
- 专业知识 电视新闻采访与编辑中同期声的技巧
- 气相色谱检测器FID-培训讲解课件
- 新教材人教A版高中数学选择性必修第一册全册教学课件
- 《HSK标准教程1》-HSK1-L8课件
- 幼儿园小班绘本:《藏在哪里了》 课件
- 上册外研社六年级英语复习教案
- 替班换班登记表
- 社会保险法 课件
- 阿利的红斗篷 完整版课件PPT
- 桥梁工程挡土墙施工
- 供应商质量问题处理流程范文
- 实验室生物安全手册(完整版)资料
评论
0/150
提交评论