福建省厦门市第二中学2025届高一数学第一学期期末学业质量监测试题含解析_第1页
福建省厦门市第二中学2025届高一数学第一学期期末学业质量监测试题含解析_第2页
福建省厦门市第二中学2025届高一数学第一学期期末学业质量监测试题含解析_第3页
福建省厦门市第二中学2025届高一数学第一学期期末学业质量监测试题含解析_第4页
福建省厦门市第二中学2025届高一数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省厦门市第二中学2025届高一数学第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.根据表中的数据,可以断定方程的一个根所在的区间是()x-101230.3712.727.3920.09A. B.C. D.2.下列函数中与是同一函数的是()(1)(2)(3)(4)(5)A.(1)(2) B.(2)(3)C.(2)(4) D.(3)(5)3.某市中心城区居民生活用水阶梯设置为三档,采用边际用水量确定分档水量为:第一档水量为240立方米/户年及以下部分;第二档水量为240立方米/户年以上至360立方米/户年部分(含360立方米/户年);第三档水量为360立方米/户年以上部分.家庭常住人口在4人(不含4人)以上的多人口户,凭户口簿,其水量按每增加一人各档水量递增50立方米/年确定.第一档用水价格为2.1元/立方米;第二档用水价格为3.2元/立方米;第三档用水价格为6.3元/立方米.小明家中共有6口人,去年整年用水花费了1602元,则小明家去年整年的用水量为().A.474立方米 B.482立方米C.520立方米 D.540立方米4.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积可能等于A. B.C. D.25.已知函数,现有下列四个结论:①对于任意实数a,的图象为轴对称图形;②对于任意实数a,在上单调递增;③当时,恒成立;④存在实数a,使得关于x的不等式的解集为其中所有正确结论的序号是()A.①② B.③④C.②③④ D.①②④6.已知函数在上有两个零点,则的取值范围为()A. B.C. D.7.函数f(x)=ln(-x)-x-2的零点所在区间为()A.(-3,-e) B.(-4,-3)C.(-e,-2) D.(-2,-1)8.设函数的最小正周期为,且在内恰有3个零点,则的取值范围是()A. B.C. D.9.终边在x轴上的角的集合为()A. B.C. D.10.已知函数,则A. B.0C.1 D.二、填空题:本大题共6小题,每小题5分,共30分。11.各条棱长均相等的四面体相邻两个面所成角的余弦值为___________.12.若直线与互相垂直,则点到轴的距离为__________13.已知,那么的值为___________.14.若幂函数的图象过点,则___________.15.大圆周长为的球的表面积为____________16.已知,则_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在R上的偶函数,当时,.(1)求函数的解析式;(2)画出函数的图像;(3)根据图像写出的单调区间和值域.18.给出以下三个条件:①点和为函数图象的两个相邻的对称中心,且;②;③直线是函数图象的一条对称轴从这三个条件中任选两个条件将下面题目补充完整,并根据要求解题已知函数.满足条件________与________(1)求函数的解析式;(2)把函数的图象向右平移个单位长度,再将所得到的函数图象上的所有点的横坐标变为原来倍(纵坐标不变),得到函数的图象.当时,函数的值域为,求实数的取值范围19.已知角的终边上一点的坐标是,其中,求,,的值.20.已知,.(1)求的值;(2)求的值.21.如图,在平面直角坐标系中,已知以为圆心的圆及其上一点.①设圆与轴相切,与圆外切,且圆心在直线上,求圆的标准方程②设点满足存在圆上的两点和,使得四边形为平行四边形,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】将与的值代入,找到使的,即可选出答案.【详解】时,.时,.时,.时,时,.因为.所以方程的一个根在区间内.故选:D.【点睛】本题考查零点存定理,函数连续,若存在,使,则函数在区间上至少有一个零点.属于基础题.2、C【解析】将5个函数的解析式化简后,根据相等函数的判定方法分析,即可得出结果.【详解】(1)与定义域相同,对应关系不同,不是同一函数;(2)与的定义域相同,对应关系一致,是同一函数;(3)与定义与相同,对应关系不同,不是同一函数;(4)与定义相同,对应关系一致,是同一函数;(5)与对应关系不同,不是同一函数;故选:C.3、D【解析】根据题意,建立水费与用水量的函数关系式,即可求解.【详解】设小明家去年整年用水量为x,水费为y.若时,则;若时,则;若时,则.令,解得:故选:D4、C【解析】如果主视图是从垂直于正方体的面看过去,则其面积为1;如果斜对着正方体的某表面看,其面积就变大,最大时,(是正对着正方体某竖着的棱看),面积为以上表面的对角线为长,以棱长为宽的长方形,其面积为,可得主视图面积最小是1,最大是,故选C.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.5、D【解析】根据函数的解析式,可知其关于直线,可判断①正确;是由与相加而成,故该函数为单调函数,由此可判断②;根据的函数值情况可判断③;看时情况,结合函数的单调性,可判断④的正误.【详解】对①,因为函数与|的图象都关于直线对称,所以的图象关于直线对称,①正确对②,当时,函数与都单调递增,所以也单调递增,②正确对③,当时,,③错误对④,因为图象关于直线对称,在上单调递减,在上单调递增,且,所以存在,使得的解集为,④正确故选:D6、B【解析】先化简,再令,求出范围,根据在上有两个零点,作图分析,求得的取值范围.【详解】,由,又,则可令,又函数在上有两个零点,作图分析:则,解得.故选:B.【点睛】本题考查了辅助角公式,换元法的运用,三角函数的图象与性质,属于中档题.7、A【解析】先计算,,根据函数的零点存在性定理可得函数的零点所在的区间【详解】函数,时函数是连续函数,,,故有,根据函数零点存在性定理可得,函数的零点所在的区间为,故选:【点睛】本题主要考查函数的零点存在性定理的应用,不等式的性质,属于基础题8、D【解析】根据周期求出,结合的范围及,得到,把看做一个整体,研究在的零点,结合的零点个数,最终列出关于的不等式组,求得的取值范围【详解】因为,所以.由,得.当时,,又,则因为在上的零点为,,,,且在内恰有3个零点,所以或解得.故选:D9、B【解析】利用任意角的性质即可得到结果【详解】终边在x轴上,可能为x轴正半轴或负半轴,所以可得角,故选B.【点睛】本题考查任意角的定义,属于基础题.10、C【解析】根据自变量所在的范围先求出,然后再求出【详解】由题意得,∴故选C【点睛】根据分段函数的解析式求函数值时,首先要分清自变量所属的范围,然后再代入解析式后可得结果,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】首先利用图像作出相邻两个面所成角,然后利用已知条件求出正四面体相邻两个面所成角的两边即可求解.【详解】由题意,四面体为正三棱锥,不妨设正三棱锥的边长为,过作平面,垂足为,取的中点,并连接、、、,如下图:由正四面体的性质可知,为底面正三角形的中心,从而,,∵为的中点,为正三角形,所以,,所以为正四面体相邻两个面所成角∵,∴易得,,∵平面,平面,∴,故.故答案为:.12、或.【解析】分析:由题意首先求得实数m的值,然后求解距离即可.详解:由直线垂直的充分必要条件可得:,即:,解得:,,当时点到轴的距离为0,当时点到轴的距离为5,综上可得:点到轴的距离为或.点睛:本题主要考查直线垂直的充分必要条件,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.13、##0.8【解析】由诱导公式直接可得.详解】.故答案为:14、27【解析】代入已知点坐标求出幂函数解析式即可求,【详解】设代入,即,所以,所以.故答案为:27.15、【解析】依题意可知,故求得表面积为.16、【解析】由题意可得:点睛:熟记同角三角函数关系式及诱导公式,特别是要注意公式中的符号问题;注意公式的变形应用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.这是解题中常用到的变形,也是解决问题时简化解题过程的关键所在三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)图像见解析(3)答案见解析【解析】(1)根据偶函数的性质即可求出;(2)根据解析式即可画出图像;(3)根据图像可得出.【小问1详解】因为是定义在R上的偶函数,当时,,则当时,,则,所以;【小问2详解】画出函数图像如下:【小问3详解】根据函数图像可得,的单调递减区间为,单调递增区间为,函数的值域为.18、(1)条件选择见解析,;(2).【解析】(1)选①②,根据条件可求得函数的最小正周期,可求得的值,由②结合的取值范围,可求得的值,即可得出函数的解析式;选①③,根据条件可求得函数的最小正周期,可求得的值,由③结合的取值范围,可求得的值,即可得出函数的解析式;选②③,分别由②、③可得出关于的表达式,两式作差可得出关于的等式,结合的取值范围可求得的值,再由②结合的取值范围,可求得的值,即可得出函数的解析式;(2)利用三角函数图象变换求得,由,得,分析可知函数,的值域为,由此可得出关于实数的不等式,由此可解得实数的取值范围.【小问1详解】解:设函数的最小正周期为,若选择①②,由①知,由②知,即,则,解得,又因为,所以,所以若选择①③,由①知,,由③知,解得又因为,所以,所以若选择②③,由②知,即,所以,由③知两式相减得,所以,因为,所以当时,,又因为,所以,所以【小问2详解】解:将向右平移个单位后得再把得到的函数图像上的所有点的横坐标变为原来的倍(纵坐标不变),得到函数,由,得因为的值域为,所以,的值域为所以,即.所以实数的取值范围为19、答案见解析【解析】首先求出,再分和两种情况讨论,根据三角函数的定义计算可得;详解】解:令,,则,①当时,,,;②当时,,,;20、(1);(2).【解析】(1)利用诱导公式直接化简即可,然

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论