![上海市交通大学附属中学2025届高二上数学期末复习检测模拟试题含解析_第1页](http://file4.renrendoc.com/view12/M0A/2D/0F/wKhkGWcJY1OAbVSxAAHwibRxB-Q087.jpg)
![上海市交通大学附属中学2025届高二上数学期末复习检测模拟试题含解析_第2页](http://file4.renrendoc.com/view12/M0A/2D/0F/wKhkGWcJY1OAbVSxAAHwibRxB-Q0872.jpg)
![上海市交通大学附属中学2025届高二上数学期末复习检测模拟试题含解析_第3页](http://file4.renrendoc.com/view12/M0A/2D/0F/wKhkGWcJY1OAbVSxAAHwibRxB-Q0873.jpg)
![上海市交通大学附属中学2025届高二上数学期末复习检测模拟试题含解析_第4页](http://file4.renrendoc.com/view12/M0A/2D/0F/wKhkGWcJY1OAbVSxAAHwibRxB-Q0874.jpg)
![上海市交通大学附属中学2025届高二上数学期末复习检测模拟试题含解析_第5页](http://file4.renrendoc.com/view12/M0A/2D/0F/wKhkGWcJY1OAbVSxAAHwibRxB-Q0875.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市交通大学附属中学2025届高二上数学期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数,且z在复平面内对应的点在第二象限,则实数m的值可以为()A.2 B.C. D.02.已知点F为抛物线C:的焦点,点,若点Р为抛物线C上的动点,当取得最大值时,点P恰好在以F,为焦点的椭圆上,则该椭圆的离心率为()A. B.C. D.3.在中,角,,所对的边分别为,,,若,,,则A. B.2C.3 D.4.从编号为1~120的商品中利用系统抽样的方法抽8件进行质检,若所抽样本中含有编号66的商品,则下列编号一定被抽到的是()A.111 B.52C.37 D.85.攒(cuán)尖是我国古代建筑中屋顶的一种结构样式,多见于亭阁或园林式建筑.下图是一顶圆形攒尖,其屋顶可近似看作一个圆锥,其轴截面(过圆锥轴的截面)是底边长为,顶角为的等腰三角形,则该屋顶的面积约为()A. B.C. D.6.数列满足,对任意,都有,则()A. B.C. D.7.已知等比数列{an}中,,,则()A. B.1C. D.48.在下列函数中,求导错误的是()A., B.,C., D.,9.已知函数对于任意的满足,其中是函数的导函数,则下列各式正确的是()A. B.C. D.10.已知数列满足,且,则()A.2 B.3C.5 D.811.2021年4月29日,中国空间站天和核心舱发射升空,这标志着中国空间站在轨组装建造全面展开,我国载人航天工程“三步走”战略成功迈出第三步.到今天,天和核心舱在轨已经九个多月.在这段时间里,空间站关键技术验证阶段完成了5次发射、4次航天员太空出舱、1次载人返回、1次太空授课等任务.一般来说,航天器绕地球运行的轨道近似看作为椭圆,其中地球的球心是这个椭圆的一个焦点,我们把椭圆轨道上距地心最近(远)的一点称作近(远)地点,近(远)地点与地球表面的距离称为近(远)地点高度.已知天和核心舱在一个椭圆轨道上飞行,它的近地点高度大约351km,远地点高度大约385km,地球半径约6400km,则该轨道的离心率为()A. B.C. D.12.在等差数列中,,,则使数列的前n项和成立的最大正整数n=()A.2021 B.2022C.4041 D.4042二、填空题:本题共4小题,每小题5分,共20分。13.已知直线与抛物线相交于A,B两点,且,则抛物线C的准线方程为___________.14.已知函数,则________.15.若,满足约束条件,则的最小值为______.16.设与是定义在同一区间上的两个函数,若函数在上有两个不同的零点,则称与在上是“关联函数”.若与在上是“关联函数”,则实数的取值范围是____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某企业2021年年初有资金5千万元,由于引进了先进生产设备,资金年平均增长率可达到.每年年底扣除下一年的消费基金1.5千万元后,剩余资金投入再生产.设从2021年的年底起,每年年底企业扣除消费基金后的剩余资金依次为,,,…(1)写出,,,并证明数列是等比数列;(2)至少到哪一年的年底,企业的剩余资金会超过21千万元?(lg18.(12分)已知是奇函数.(1)求的值;(2)若,求的值19.(12分)已知圆:,直线:.圆与圆关于直线对称(1)求圆的方程;(2)点是圆上的动点,过点作圆的切线,切点分别为、.求四边形面积的取值范围20.(12分)过点作圆的两条切线,切点分别为A,B;(1)求直线AB的方程;(2)若M为圆上的一点,求面积的最大值21.(12分)已知函数(1)求在点处的切线方程(2)求直线与曲线围成的封闭图形的面积22.(10分)圆的圆心为,且与直线相切,求:(1)求圆的方程;(2)过的直线与圆交于,两点,如果,求直线的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据复数的几何意义求出的范围,即可得出答案.【详解】解:当z在复平面内对应的点在第二象限时,则有,可得,结合选项可知,B正确故选:B2、D【解析】过点P引抛物线准线的垂线,交准线于D,根据抛物线的定义可知,记,根据题意,当最小,即直线与抛物线相切时满足题意,进而解出此时P的坐标,解得答案即可.【详解】如图,易知点在抛物线C的准线上,作PD垂直于准线,且与准线交于点D,记,则.由抛物线定义可知,.由图可知,当取得最大值时,最小,此时直线与抛物线相切,设切线方程为,代入抛物线方程并化简得:,,方程化为:,代入抛物线方程解得:,即,则,.于是,椭圆的长轴长,半焦距,所以椭圆的离心率.故选:D.3、A【解析】利用正弦定理,可直接求出的值.【详解】在中,由正弦定理得,所以,故选A.【点睛】本题考查利用正弦定理求边,要记得正弦定理所适用的基本类型,考查计算能力,属于基础题4、A【解析】先求出等距抽样的组距,从而得到被抽到的是,从而求出答案.【详解】120件商品中抽8件,故,因为含有编号66的商品被抽到,故其他能被抽到的是,当时,,其他三个选项均不合要求,故选:A5、B【解析】由轴截面三角形,根据已知可得圆锥底面半径和母线长,然后可解.【详解】轴截面如图,其中,,所以,所以,所以圆锥的侧面积.故选:B6、C【解析】首先根据题设条件可得,然后利用累加法可得,所以,最后利用裂项相消法求和即可.【详解】由,得,则,所以,.故选:C.【点睛】本题考查累加法求数列通项,考查利用错位相减法求数列的前n项和,考查逻辑思维能力和计算能力,属于常考题.7、D【解析】设公比为,然后由已知条件结合等比数列的通项公式列方程求出,从而可求出,【详解】设公比为,因为等比数列{an}中,,,所以,所以,解得,所以,得故选:D8、B【解析】分别求得每个函数的导数即可判断.详解】;;;.故求导错误的是B.故选:B.9、C【解析】令,结合题意可得,利用导数讨论函数的单调性,进而得出,变形即可得出结果.【详解】令,则,又,所以,令,令,所以函数在上单调递减,在单调递增,所以,即,则.故选:C10、D【解析】使用递推公式逐个求解,直到求出即可.【详解】因为所以,,,.故选:D11、A【解析】根据远地点和近地点,求出轨道即椭圆的半长轴和半焦距,即可求得答案.【详解】设椭圆的半长轴为a,半焦距为c.则根据题意得;解得,故该轨道即椭圆的离心率为,故选:A12、C【解析】根据等差数列的性质易得,,再应用等差数列前n项和公式及等差中项、下标和的性质可得、,即可确定答案.【详解】因为是等差数列且,,所以,,.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将直线与抛物线联立结合抛物线的定义即可求解.【详解】解:直线与抛物线相交于A,B两点设,直线与抛物线联立得:所以所以即解得:所以抛物线C的准线方程为:.故答案为:.14、2【解析】根据导数的计算法则计算即可.【详解】∵,∴,∴∴.故答案为:2.15、0【解析】作出约束条件对应的可行域,当目标函数过点时,取得最小值,求解即可.【详解】作出约束条件对应的可行域,如下图阴影部分,联立,可得交点为,目标函数可化为,当目标函数过点时,取得最小值,即.故答案为:0.【点睛】本题考查线性规划,考查数形结合的数学思想的应用,考查学生的计算求解能力,属于基础题.16、【解析】令得,设函数,则直线与函数在区间上的图象有两个交点,利用导数分析函数的单调性与极值,利用数形结合思想可求得实数的取值范围.【详解】令得,设函数,则直线与函数在区间上的图象有两个交点,,令,可得,列表如下:极小值,,如图所示:由图可知,当时,直线与函数在区间上的图象有两个交点,因此,实数的取值范围是.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,,证明见解析(2)至少到2026年的年底,企业的剩余资金会超过21千万元【解析】(1)由题意可知,,,,再结合等比数列的性质,即可求解(2)由(1)知,,则,令,再结合对数函数运算,即可求解【小问1详解】依题意知,,,,,所以,又,所以是首项为3,公比为1.5的等比数列.【小问2详解】由(1)知,,所以令,解得,所以,所以至少到2026年的年底,企业的剩余资金会超过21千万元18、(1);(2)4【解析】(1)根据奇函数的定义,代入化简得,进而可得的值;(2)设,可得,根据奇函数的性质得,进而可得结果.【详解】解:(1)因为是奇函数,所以,即,整理得,又,所以(2)设,因为,所以因为是奇函数,所以所以【点睛】本题主要考查了已知函数的奇偶性求参数的值,根据函数的奇偶性求函数的值,属于中档题.19、(1)(2)【解析】(1)圆关于直线对称,半径不变,只需求出圆心对称的坐标即可.(2)将四边形面积分成两个全等的直角三角形,利用直角三角形的性质,一条直角边不变时,斜边与另外一条直角边的大小成正相关,从而得到面积的最小值与最大值.【小问1详解】由题可知的圆心为,圆的半径与之相同,圆心与之关于对称,设的圆心为,故可根据中点在对称的直线上得到①,根据斜率相乘为-1得到②,联立①②可得,所以圆心坐标为,且半径为,故的方程为【小问2详解】连接,将四边形分割成两个全等的直角三角形,所以有,四边形面积的范围可转化为MP长度的范围,在中,根据勾股定理可知,因为半径长度不变,所以最大时最大;所以最小时最小;画出如下图,当动点P移动至在时面积最小,时面积最大;设点P的坐标为,所以有,解得,所以,,所以,所以;,所以.所以20、(1)(2)【解析】(1)求出以为直径的圆的方程,结合已知圆的方程,将两圆方程相减可求得两圆公共弦所在直线方程;(2)求出圆上的点M到直线AB的距离的最大值,求出,利用三角形面积公式求得答案.【小问1详解】圆的圆心坐标为,半径为1,则的中点坐标为,,以为圆心,为直径的圆的方程为,由,得①,由,得②,①②得:直线的方程为;【小问2详解】圆心到直线的距离为故圆上的点M到直线的距离的最大值为,而,故面积的最大值为.21、(1)(2)2【解析】(1)首先求出函数的导函数,即可求出切线的斜率,再利用点斜式求出切线方程;(2)首先求出两函数的交点坐标,再利用定积分及微积分基本定理计算可得;【小问1详解】解:因为,所以,所以切线的斜率,切线过点,切线的方程为,即【小问2详解】解:由题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度企业研发成果知识产权转让合同范本
- 2025年度医疗设备改造与售后服务协议
- 2025年度出租车公司车辆租赁合同修订版
- 2025抖音主播品牌代言合作框架协议书
- 2025年C301-I型低压甲醇合成催化剂合作协议书
- 2025年度咖啡厅店铺转让合同范本
- 2025年创客中心项目发展计划
- 科研部研究项目进展与未来规划计划
- 教学资源的有效整合与利用计划
- 度假村行业保安工作总结计划
- 人教部编道德与法治五年级下册单元计划
- 旅行社运营实务电子课件 1.2 了解旅行社核心业务部门
- vc约起来史上最全180个知名投资人联系方式
- 中国酒文化英文介绍
- 部编版五年级语文下册课文四字词总结
- 社会稳定风险评估报告风险评估参考
- 综合交通运输体系认知
- GM/T 0115-2021信息系统密码应用测评要求
- YY 0670-2008无创自动测量血压计
- JJF 1458-2014磁轭式磁粉探伤机校准规范
- GB/T 324-2008焊缝符号表示法
评论
0/150
提交评论