2025届新疆和田地区高一数学第一学期期末统考模拟试题含解析_第1页
2025届新疆和田地区高一数学第一学期期末统考模拟试题含解析_第2页
2025届新疆和田地区高一数学第一学期期末统考模拟试题含解析_第3页
2025届新疆和田地区高一数学第一学期期末统考模拟试题含解析_第4页
2025届新疆和田地区高一数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届新疆和田地区高一数学第一学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数满足对任意实数,都有成立,则的取值范围是()A B.C. D.2.当时,在同一平面直角坐标系中,与的图象是()A. B.C. D.3.已知幂函数的图象过点,则A. B.C.1 D.24.函数单调递增区间为A. B.C D.5.已知,都是正数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件6.已知函数的值域为R,则a的取值范围是()A. B.C. D.7.已知偶函数的定义域为且,,则函数的零点个数为()A. B.C. D.8.如图,已知,,共线,且向量,则()A. B.C. D.9.函数的最小值为()A. B.C.0 D.10.已知函数的零点在区间内,则()A.4 B.3C.2 D.1二、填空题:本大题共6小题,每小题5分,共30分。11.已知,若方程有四个根且,则的取值范围是______.12.已知,则____________.13.如图,某化学实验室的一个模型是一个正八面体(由两个相同的正四棱锥组成,且各棱长都相等)若该正八面体的表面积为,则该正八面体外接球的体积为___________;若在该正八面体内放一个球,则该球半径的最大值为___________.14.已知tanα=3,则sinα(cosα-sinα)=______15.不等式的解集是___________.16.已知函数在上单调递减,则实数的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)求函数的最小正周期和单调递减区间;(2)用括号中的正确条件填空.函数的图象可以用下面的方法得到:先将正弦曲线,向___________(左,右)平移___________(,)个单位长度;在纵坐标不变的条件下再把所得曲线上各点的横坐标变为原来的___________(,2)倍,再在横坐标不变的条件下把所得曲线上各点的纵坐标变为原来的___________(,2)倍,最后再把所得曲线向___________(上,下)平移___________(1,2)个单位长度.18.已知函数的一系列对应值如下表:(1)根据表格提供的数据求函数的一个解析式;(2)根据(1)的结果,若函数周期为,当时,方程恰有两个不同的解,求实数的取值范围.19.冰雪装备器材产业是冰雪产业重要组成部分,加快发展冰雪装备器材产业,对筹办好北京2022年冬奥会、冬残奥会,带动我国3亿人参与冰雪运动具有重要的支撑作用.某冰雪装备器材生产企业,生产某种产品的年固定成本为300万元,每生产千件,需另投入成本(万元).当年产量低于60千件时,;当年产量不低于60千件时,.每千件产品售价为60万元,且生产的产品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?20.已知函数.(1)求的单调区间;(2)若,且,求值.21.已知函数.(1)求函数的定义域;(2)若实数,且,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】易知函数在R上递增,由求解.【详解】因为函数满足对任意实数,都有成立,所以函数在R上递增,所以,解得,故选:C2、B【解析】由定义域和,使用排除法可得.【详解】的定义域为,故AD错误;BC中,又因为,所以,故C错误,B正确.故选:B3、B【解析】先利用待定系数法求出幂函数的表达式,然后将代入求得的值.【详解】设,将点代入得,解得,则,所以,答案B.【点睛】主要考查幂函数解析式的求解以及函数值求解,属于基础题.4、A【解析】,所以.故选A5、B【解析】利用特殊值法、基本不等式结合充分条件、必要条件的定义判断可得出结论.【详解】充分性:由于,,且,取,则,充分性不成立;必要性:由于,,且,解得,必要性成立.所以,当,时,“”“”必要不充分条件.故选:B.6、D【解析】首先求出时函数的值域,设时,的值域为,依题意可得,即可得到不等式组,解得即可;【详解】解:由题意可得当时,所以的值域为,设时,的值域为,则由的值域为R可得,∴,解得,即故选:D7、D【解析】令得,作出和在上的函数图象如图所示,由图像可知和在上有个交点,∴在上有个零点,∵,均是偶函数,∴在定义域上共有个零点,故选点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等8、D【解析】由已知得,再利用向量的线性可得选项.【详解】因为,,,三点共线,所以,所以.故选:D.9、C【解析】利用对数函数单调性得出函数在时取得最小值【详解】,因为是增函数,因此当时,,,当时,,,而时,,所以时,故选:C10、B【解析】根据零点存在性定理即可判断出零点所在的区间.【详解】因为,,所以函数在区间内有零点,所以.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】作出函数的图象,结合图象得出,,得到,结合指数函数的性质,即可求解.【详解】由题意,作出函数的图象,如图所示,因为方程有四个根且,由图象可知,,可得,则,设,所以,因为,所以,所以,所以,即,即的取值范围是.故答案为:.【点睛】本题主要考查了函数与方程的综合应用,其中解答中作出函数的图象,结合图象和指数函数的性质求解是解答的关键,着重考查数形结合思想,以及推理与运算能力.12、【解析】求得函数的最小正周期为,进而计算出的值(其中),再利用周期性求解即可.【详解】函数的最小正周期为,当时,,,,,,,所以,,,因此,.故答案为:.13、①.②.【解析】由已知求得正八面体的棱长为,进而求得,即知外接球的半径,进而求得体积;若球O在正八面体内,则球O半径的最大值为O到平面的距离,证得平面,再利用相似可知,即可求得半径.【详解】如图,记该八面体为,O为正方形的中心,则平面设,则,解得.在正方形中,,则在直角中,知,即正八面体外接球的半径为故该正八面体外接球的体积为.若球O在正八面体内,则球O半径的最大值为O到平面的距离.取的中点E,连接,,则,又,,平面过O作于H,又,,所以平面,又,,则,则该球半径的最大值为.故答案为:,14、【解析】利用同角三角函数基本关系式化简所求,得到正切函数的表达式,根据已知即可计算得解【详解】解:∵tanα=3,∴sinα(cosα﹣sinα)故答案为【点睛】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基本知识的考查15、或【解析】把分式不等式转化为,从而可解不等式.【详解】因为,所以,解得或,所以不等式的解集是或.故答案为:或.16、【解析】根据指数函数与二次函数的单调性,以及复合函数的单调性的判定方法,求得在上单调递增,在区间上单调递减,再结合题意,即可求解.【详解】令,可得抛物线的开口向上,且对称轴为,所以函数在上单调递减,在区间上单调递增,又由函数,根据复合函数的单调性的判定方法,可得函数在上单调递增,在区间上单调递减,因为函数在上单调递减,则,可得实数的取值范围是.故答案:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)左,,,2,上,1【解析】(1)根据降幂公式、二倍角的正弦公式及两角和的正弦公式化简,由正弦型三角函数的周期公式求周期,由正弦型函数的单调性求单调区间;(2)根据三角函数的图象变换过程求解即可.【小问1详解】,∴函数的最小正周期.由,得:,,∴的单调递减区间为,.【小问2详解】将的图象向左平移个单位,得到的图象,在纵坐标不变的条件下再把所得曲线上各点的横坐标变为原来的倍,得到的图象,再在横坐标不变的条件下把所得曲线上各点的纵坐标变为原来的2倍,得到的图象,最后再把所得曲线向上平移1个单位长度,即可得到函数的图象.18、(1)(2)【解析】(1)根据表格提供的数据画出函数图象,求出、和、的值,写出的解析式即可;(2)由函数的最小正周期求出的值,再利用换元法,令,结合函数的图象求出方程恰有两个不同的解时的取值范围【详解】解:(1)绘制函数图象如图所示:设的最小正周期为,得.由得又解得,令,即,,据此可得:,又,令可得所以函数的解析式为(2)因为函数的周期为,又,所以令,因为,所以在上有两个不同的解,等价于函数与的图象有两个不同的交点,,所以方程在时恰好有两个不同的解的条件是,即实数的取值范围是【点睛】本题考查了三角函数的图象与性质的应用问题,也考查了函数与方程的应用问题,属于中档题19、(1)(2)当该企业年产量为50千件时,所获得利润最大,最大利润是950万元【解析】(1)根据题意,分段写出年利润的表达式即可;(2)根据年利润的解析式,分段求出两种情况下的最大利润值,比较大小,可得答案.【小问1详解】当时,;当时,.所以;【小问2详解】当时,.当时,取得最大值,且最大值为950.当时,当且仅当时,等号成立.因为,所以当该企业年产量为50千件时,所获得利润最大,最大利润是950万元.20、(1)的单调递增区间为,单调递减区间(2)【解析】(1)化简解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论