2025届云南省开远市第二中学校高二上数学期末学业质量监测模拟试题含解析_第1页
2025届云南省开远市第二中学校高二上数学期末学业质量监测模拟试题含解析_第2页
2025届云南省开远市第二中学校高二上数学期末学业质量监测模拟试题含解析_第3页
2025届云南省开远市第二中学校高二上数学期末学业质量监测模拟试题含解析_第4页
2025届云南省开远市第二中学校高二上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届云南省开远市第二中学校高二上数学期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则下列判断正确的是()A.直线与曲线相切B.函数只有极大值,无极小值C.若与互为相反数,则的极值与的极值互为相反数D.若与互为倒数,则的极值与的极值互为倒数2.设P是抛物线上的一个动点,F为抛物线的焦点.若,则的最小值为()A. B.C.4 D.53.如图,四棱锥的底面是矩形,设,,,是棱上一点,且,则()A. B.C. D.4.双曲线的渐近线方程是()A. B.C. D.5.抛物线有如下光学性质:平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为F,一条平行于y轴的光线从点射出,经过抛物线上的点A反射后,再经抛物线上的另一点B射出,则经点B反射后的反射光线必过点()A. B.C. D.6.已知点到直线:的距离为1,则等于()A. B.C. D.7.南北朝时期杰出的数学家祖冲之的儿子祖暅在数学上也有很多创造,其最著名的成就是祖暅原理:夹在两个平行平面之间的几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,现有一个圆柱体和一个长方体,它们的底面面积相等,高也相等,若长方体的底面周长为,圆柱体的体积为,根据祖暅原理,可推断圆柱体的高()A.有最小值 B.有最大值C.有最小值 D.有最大值8.已知为等差数列,为其前n项和,,则下列和与公差无关的是()A. B.C. D.9.已知双曲线C:-=1(a>b>0)的左焦点为F1,若过原点倾斜角为的直线与双曲线C左右两支交于M、N两点,且MF1NF1,则双曲线C的离心率是()A.2 B.C. D.10.已知直线,,若,则实数的值是()A.0 B.2或-1C.0或-3 D.-311.三个实数构成一个等比数列,则圆锥曲线的离心率为()A. B.C.或 D.或12.若函数有零点,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆:,:.则这两圆的连心线方程为_________(答案写成一般式方程)14.记为等比数列的前n项和,若,公比,则______15.已知椭圆的左、右焦点分别为,,为椭圆上一点,垂直于轴,且为等腰三角形,则椭圆的离心率为__________16.已知双曲线C:的一条渐近线与直线l:平行,则双曲线C的离心率是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足(1)求数列的通项公式;(2)是否存在正实数a,使得不等式对一切正整数n都成立?若存在,求出a的取值范围;若不存在,请说明理由.18.(12分)已知椭圆:经过点为,且.(1)求椭圆的方程;(2)若直线与椭圆相切于点,与直线相交于点.已知点,且,求此时的值.19.(12分)已知数列的前n项积,数列为等差数列,且,(1)求与的通项公式;(2)若,求数列的前n项和20.(12分)已知空间三点.(1)求以为邻边平行四边形的周长和面积;(2)若,且分别与垂直,求向量的坐标.21.(12分)已知抛物线E:y2=8x(1)求抛物线的焦点及准线方程;(2)过点P(-1,1)的直线l1与抛物线E只有一个公共点,求直线l1的方程;(3)过点M(2,3)的直线l2与抛物线E交于点A,B.若弦AB的中点为M,求直线l2的方程22.(10分)在数列中,,.(1)证明:数列为等比数列,并求数列的通项公式;(2)求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求出函数的导函数,通过在某点处的导数为该点处切线的斜率,求出切线方程,并且判断出极值,通过结合与互为相反数,若与互为倒数,分别判断的极值与的极值是否互为相反数,以及是否互为倒数.【详解】,,令,得,所以,因为,,所以曲线在点处的切线方程为,故A错;当时,存在使,且当时,;当时,,即有极小值,无极大值,故B错误;设为的极值点,则,且,所以,,当时,;当时,,故C正确,D错误.2、C【解析】作出图形,过点作抛物线准线的垂线,由抛物线的定义得,从而得出,再由、、三点共线时,取最小值得解.【详解】,所以在抛物线的内部,过点作抛物线准线的垂线,由抛物线的定义得,,当且仅当、、三点共线时,等号成立,因此,的最小值为.故选:C.3、B【解析】根据空间向量基本定理求解【详解】由已知故选:B4、A【解析】先将双曲线的方程化为标准方程得,再根据双曲线渐近线方程求解即可.【详解】解:将双曲线的方程化为标准方程得,所以,所以其渐近线方程为:,即.故选:A.5、D【解析】求出、坐标可得直线的方程,与抛物线方程联立求出,根据选项可得答案,【详解】把代入得,所以,所以直线的方程为即,与抛物线方程联立解得,所以,因为反射光线平行于y轴,根据选项可得D正确,故选:D6、D【解析】利用点到直线的距离公式,即可求得参数的值.【详解】因为点到直线:的距离为1,故可得,整理得,解得.故选:.7、C【解析】由条件可得长方体的体积为,设长方体的底面相邻两边分别为,根据基本不等式,可求出底面面积的最大值,进而求出高的最小值,得出结论.【详解】依题意长方体的体积为,设圆柱的高为长方体的底面相邻两边分别为,,当且仅当时,等号成立,.故选:C.【点睛】本题以数学文化为背景,考查基本不等式求最值,要认真审题,理解题意,属于基础题.8、C【解析】依题意根据等差数列的通项公式可得,再根据等差数列前项和公式计算可得;【详解】解:因为,所以,即,所以,,,,故选:C9、C【解析】根据双曲线和直线的对称性,结合矩形的性质、双曲线的定义、离心率公式、余弦定理进行求解即可.【详解】设双曲线的右焦点为F2,过原点倾斜角为的直线为,设M、N分别在第三、第一象限,由双曲线和直线的对称性可知:M、N两点关于原点对称,而MF1NF1,因此四边形是矩形,而,所以是等边三角形,故,因此,因为,所以,在等腰三角形中,由余弦定理可知:,由矩形的性质可知:,由双曲线的定义可知:,故选:C【点睛】关键点睛:利用矩形的性质、双曲线的定义是解题的关键.10、C【解析】由,结合两直线一般式有列方程求解即可.【详解】由知:,解得:或故选:C.11、D【解析】根据三个实数构成一个等比数列,解得,然后分,讨论求解.【详解】因为三个实数构成一个等比数列,所以,解得,当时,方程表示焦点在x轴上的椭圆,所以,所以,当时,方程表示焦点在y轴上的双曲线,所以,所以,故选:D12、A【解析】设,则函数有零点转化为函数的图象与直线有交点,利用导数判断函数的单调性,即可求出【详解】设,定义域为,则,易知为单调递增函数,且所以当时,,递减;当时,,递增,所以所以,即故选:A【点睛】本题主要考查根据函数有零点求参数的取值范围,意在考查学生的转化能力,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出两圆的圆心坐标,再利用两点式求出直线方程,再化成一般式即可【详解】解:圆,即,两圆的圆心为:和,这两圆的连心线方程为:,即故答案为:14、4【解析】根据给定条件列式求出数列的首项即可计算作答.【详解】依题意,,解得,所以.故答案为:415、.【解析】通过垂直于轴,可以求出,由已知为等腰三角形,可以得到,结合关系,可以得到一个关于离心率的一元二次方程,解方程求出离心率.【详解】∵垂直于,∴可得,又∵为等腰三角形,∴,即,整理得,解得.【点睛】本题考查了求椭圆离心率问题,关键是通过已知条件构造出关于离心率的方程.16、【解析】先用两直线平行斜率相等求出,再利用离心率的定义求解即可.【详解】由题意可得双曲线C的一条渐近线方程为,则,即,则,故双曲线C的离心率故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)通过构造新数列求解;(2)由(1)得,再研究其单调性,从而得到最值,再解不等式即可求解.【小问1详解】由,假设其变形为,则有,所以,又.所以,即.【小问2详解】由(1),所以,令,则,所以,所以是递减数列,所以,所以使得不等式对一切正整数n都成立,则,即,因为为正实数,所以.18、(1);(2).【解析】(1)根据椭圆离心率公式,结合代入法进行求解即可;(2)根据直线与椭圆的位置关系求出点的坐标,结合平面向量垂直的性质进行求解即可.【详解】(1)由已知得,,而,解得,椭圆的方程为;(2)设直线方程为代入得,化简得由,得,,设,则,,则设,则,则,所以在轴存在使.,,所以在.19、(1),.(2).【解析】(1)由已知得,,两式相除得,由已知得,求得数列的公差为,由等差数列的通项公式可求得;(2)运用错位相减法可求得.【小问1详解】解:因为数列的前n项积,所以,所以,两式相除得,因为数列为等差数列,且,,所以,即,所以数列的公差为,所以,所以,【小问2详解】解:由(1)得,所以,,所以,所以.20、(1)周长为,面积为7.(2)或.【解析】(1)根据点,求出向量,利用向量的摸公式即可求出的距离,可以求出周长,再利用向量的夹角公式求出夹角的余弦值,根据平方关系得到正弦值,再利用即可求解;(2)首先设出,根据题意可得出的方程组,解出满足条件所有的值即可求解.【小问1详解】由题中条件可知,,,,.所以以为邻边的平行四边形的周长为.因为,因为,所以.所以.故以以为邻边的平行四边形的面积为:.【小问2详解】设,则,,因为,且分别与垂直,得,解得或所以向量的坐标为或.21、(1)焦点为(2,0),准线方程为x=-2;(2)y=1或x-y+2=0或2x+y+1=0;(3)4x-3y+1=0.【解析】(1)根据抛物线的方程及其几何性质,求焦点和准线;(2)分直线l1的斜率为0和不为0两种情况,根据直线与抛物线只有一个公共点,由直线与x轴平行或Δ=0,得解;(3)利用点差法求出直线l2的斜率,即可得直线l2的方程【小问1详解】由题意,p=4,则焦点为(2,0),准线方程为x=-2【小问2详解】当直线l1的斜率为0时,y=1;当直线l1的斜率不为0时,设直线l1为x+1=m(y-1),联立,得y2-8my+8m+8=0,因为直线l1与抛物线E只有一个公共点,所以Δ=64m2-4(8m+8)=0,解得m=1或,所以直线l1的方程为x-y+2=0或2x+y+1=0,综上,直线l1为y=1或x-y+2=0或2x+y+1=0【小问3详解】由题意,直线l2的斜率一定存在,设其斜率为k,A(x1,y1),B(x2,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论