2025届重庆市南川中学高二数学第一学期期末复习检测模拟试题含解析_第1页
2025届重庆市南川中学高二数学第一学期期末复习检测模拟试题含解析_第2页
2025届重庆市南川中学高二数学第一学期期末复习检测模拟试题含解析_第3页
2025届重庆市南川中学高二数学第一学期期末复习检测模拟试题含解析_第4页
2025届重庆市南川中学高二数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届重庆市南川中学高二数学第一学期期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则下列说法中一定正确的是()A. B.C. D.2.如果向量,,共面,则实数的值是()A. B.C. D.3.在中国古代,人们用圭表测量日影长度来确定节气,一年之中日影最长一天被定为冬至.从冬至算起,依次有冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,若冬至、立春、春分日影长之和为31.5尺,小寒、雨水,清明日影长之和为28.5尺,则大寒、惊蛰、谷雨日影长之和为()A.25.5尺 B.34.5尺C.37.5尺 D.96尺4.抛物线的准线方程是A. B.C. D.5.某程序框图如图所示,该程序运行后输出的值是()A. B.C. D.6.将函数图象上所有点横坐标伸长到原来的2倍,纵坐标不变,再将所得图象向右平移个单位长度,得到函数的图象,则()A. B.C. D.7.过点且与双曲线有相同渐近线的双曲线方程为()A B.C. D.8.已知命题:若直线的方向向量与平面的法向量垂直,则;命题:等轴双曲线的离心率为,则下列命题是真命题的是()A. B.C. D.9.执行如图所示的程序框图,如果输入,那么输出的a值为()A.3 B.27C.-9 D.910.直线,若的倾斜角为60°,则的斜率为()A. B.C. D.11.在等差数列中,若,则()A.6 B.9C.11 D.2412.已知点A、是抛物线:上的两点,且线段过抛物线的焦点,若的中点到轴的距离为3,则()A.3 B.4C.6 D.8二、填空题:本题共4小题,每小题5分,共20分。13.若向量,且夹角的余弦值为________14.已知过点作抛物线的两条切线,切点分别为A、B,直线经过抛物线C的焦点F,则___________15.若圆与圆相交,则的取值范围是__________.16.函数是R上的单调递增函数,则a的取值范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角坐标系中,点,,(1)求直线BC的方程;(2)记的外接圆为圆M,若直线OC被圆M截得的弦长为4,求点C的坐标18.(12分)已知数列的前n项和为,当时,;数列中,.直线经过点(1)求数列的通项公式和;(2)设,求数列的前n项和,并求的最大整数n19.(12分)某校高二年级全体学生参加了一次数学测试,学校利用简单随机抽样的方法从甲班、乙班各抽取五名同学的数学测试成绩(单位:分)得到如下茎叶图,若甲、乙两班数据的中位数相等且平均数也相等.(1)求出茎叶图中m和n的值:(2)若从86分以上(不含86分)的同学中随机抽出两名,求此两人都来自甲班的概率.20.(12分)已知直线l过定点(1)若直线l与直线垂直,求直线l的方程;(2)若直线l在两坐标轴上的截距相等,求直线l的方程21.(12分)(1)已知:方程表示双曲线;:关于的不等式有解.若为真,求的取值范围;(2)已知,,.若p是q的必要不充分条件,求实数m的取值范围.22.(10分)某企业为响应“安全生产”号召,将全部生产设备按设备安全系数分为A,两个等级,其中等设备安全系数低于A等设备.企业定时对生产设备进行检修,并将部分等设备更新成A等设备.据统计,2020年底该企业A等设备量已占全体设备总量的30%.从2021年开始,企业决定加大更新力度,预计今后每年将16%的等设备更新成A等设备,与此同时,4%的A等设备由于设备老化将降级成等设备.(1)在这种更新制度下,在将来的某一年该企业的A等设备占全体设备的比例能否超过80%?请说明理由;(2)至少在哪一年底,该企业的A等设备占全体设备的比例超过60%.(参考数据:,,)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】AD选项,举出反例即可;BC选项,利用不等式的基本性质进行判断.【详解】当,时,满足,此时,故A错误;因,所以,,,B正确;因为,所以,,故,C错误;当,时,满足,,,所以,D错误.故选:B2、B【解析】设,由空间向量的坐标运算可得出方程组,即可解得的值.【详解】由于向量,,共面,设,可得,解得.故选:B.3、A【解析】由题意可知,十二个节气其日影长依次成等差数列,设冬至日的日影长为尺,公差为尺,利用等差数列的通项公式,求出,即可求出,从而得到答案【详解】设从冬至日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{},如冬至日的日影长为尺,设公差为尺.由题可知,所以,,,,故选:A4、C【解析】根据抛物线的概念,可得准线方程为5、B【解析】模拟程序运行后,可得到输出结果,利用裂项相消法即可求出答案.【详解】模拟程序运行过程如下:0),判断为否,进入循环结构,1),判断为否,进入循环结构,2),判断为否,进入循环结构,3),判断为否,进入循环结构,……9),判断为否,进入循环结构,10),判断为是,故输出,故选:B.【点睛】本题主要考查程序框图,考查裂项相消法,难度不大.一般遇见程序框图求输出结果时,常模拟程序运行以得到结论.6、A【解析】根据三角函数图象的变换,由逆向变换即可求解.【详解】由已知的函数逆向变换,第一步,向左平移个单位长度,得到的图象;第二步,图象上所有点的横坐标缩短到原来的,纵坐标不变,得到的图象,即的图象.故.故选:A7、C【解析】设与双曲线有相同渐近线的双曲线方程为,代入点的坐标,求出的值,即可的解.【详解】设与双曲线有相同渐近线的双曲线方程为,代入点,得,解得,所以所求双曲线方程为,即故选:C.8、D【解析】先判断出p、q的真假,再分别判断四个选项的真假.【详解】因为“若直线的方向向量与平面的法向量垂直,则或”,所以p为假命题;对于等轴双曲线,,所以离心率为,所以q为真命题.所以假命题,故A错误;为假命题,故B错误;为假命题,故C错误;为真命题,故D正确.故选:D9、B【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环累乘值,并判断满足时输出的值【详解】解:模拟执行程序框图,可得,时,不满足条件,;不满足条件,;不满足条件,;满足条件,退出循环,输出的值为27故选:10、D【解析】直线,斜率乘积为,斜线斜率等于倾斜角的正切值.【详解】,,所以.故选:D.11、B【解析】根据等差数列的通项公式的基本量运算求解【详解】设的公差为d,因为,所以,又,所以故选:B12、D【解析】直接根据抛物线焦点弦长公式以及中点坐标公式求结果【详解】设,,则的中点到轴的距离为,则故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据求解即可.【详解】,故答案为:【点睛】本题主要考查了求空间中两个向量的夹角,属于基础题.14、64【解析】用字母进行一般化研究,先求出切点弦方程,再联立化简,最后代入数据计算【详解】设,点处的切线方程为联立,得由,得即,解得所以点处的切线方程为,整理得同理,点处的切线方程为设为两切线的交点,则所以在直线上即直线AB的方程为又直线AB经过焦点所以,即联立得所以所以本题中所以故答案为:64【点睛】结论点睛:过点作抛物线的两条切线,切点弦的方程为15、【解析】根据圆心距小于两半径之和,大于两半径之差的绝对值列出不等式解出即可.【详解】圆的圆心为原点,半径为,圆,即的圆心为,半径为,由于两圆相交,故,即,解得,即的取值范围是,故答案为:16、【解析】对求导,由题设有恒成立,再利用导数求的最小值,即可求a的范围.【详解】由题设,,又在R上的单调递增函数,∴恒成立,令,则,∴当时,则递减;当时,则递增.∴,故.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)延长CB交x轴于点N,根据给定条件求出即可计算作答.(2)利用待定系数法求出圆M的方程,再由给定弦长确定C点位置,推理计算得解.【小问1详解】延长CB交x轴于点N,如图,因,则,又,则有,又,于是得,则直线BC的倾斜角为120°,直线BC的斜率,因此,,即所以直线BC的方程为.【小问2详解】依题意,设圆M的方程为,由(1)得:,解得,于是得圆M的方程为,即,圆心,半径,因直线OC被圆M所截的弦长为4,则直线OC过圆心,其方程为,由解得,即,所以点C的坐标是.18、(1),(2),7【解析】(1)根据之间的递推关系,可写出。,采用和相减得方法,可求得,由题意可推得为等差数列,利用等差数列的通项公式可求得答案;(2)写出的表达式,利用错位相减法可求得数列的前n项和,进而利用数列的单调性求的最大整数n【小问1详解】∵,∴,则,∴,即,得又,∴,即,可得数列是以2为首项,以2为公比的等比数列,则;∵点在直线上,∴,∴,即数列是等差数列,又,∴;【小问2详解】∵,∴,∴,∴,两式相减可得:,∴,设,则,故,是单调递增的故当时,单调递增的,当时,;当时,,故满足的最大整数19、(1),(2)【解析】(1)根据茎叶图得甲班中位数为,由此能求出,根据由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,从86分以上(不含86分)的同学中随机抽出两名,用列举法写出基本事件总数,再利用古典概型的概率计算公式即可求解.【小问1详解】根据茎叶图可知1班中位数为86,则,又∵,且故【小问2详解】由(1)可知,甲班86分以上有2人,乙班86以上有2人设甲班86分以上2人为,,乙班86分以上2人为,,从中任取两名同学共有,,,,,共有6组基本事件,且每组出现都是等可能的记:“从86分以上(不含86分)的同学中随机抽出两名,两人都来自甲班”为事件M,事件M包括:共1个基本事件,由古典概型的计算概率的公式知∴所以两人都来自甲班的概率为20、(1)(2)或【解析】(1)求出直线的斜率可得l的斜率,再借助直线点斜式方程即可得解.(2)按直线l是否过原点分类讨论计算作答.【小问1详解】直线的斜率为,于是得直线l的斜率,则,即,所以直线l的方程是:.【小问2详解】因直线l在两坐标轴上的截距相等,则当直线l过原点时,直线l的方程为:,即,当直线l不过原点时,设其方程为:,则有,解得,此时,直线l的方程为:,所以直线l的方程为:或.21、(1)1m2;(2)(0,1]【解析】(1)由pq为真,可得p真且q假,然后分别求出p真,q假时的的取值范围,再求交集即可,(2)求得p:1x2,再由p是q的必要不充分条件,得,解不等式组可求得答案【详解】(1)因为pq为真,所以p真且q假,p真:m1m301m3,q假,则不等式无解,则402m2,所以1m2.(2)依题意,p:1x2,因p是q的必要不充分条件,于是得(不同时取等号),解得0m1,所以实数m的取值范围是(0,1].22、(1)A等设备量不可能超过生产设备总量的80%,理由见解析;(2)在2025年底实现A等设备量超过生产设备

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论