




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省湖湘教育三新探索协作体高二上数学期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则=()A.244 B.1C. D.2.若抛物线上的点到其焦点的距离是到轴距离的倍,则等于A. B.1C. D.23.已知双曲线,则双曲线的离心率为()A. B.C. D.4.已知各项均为正数的等比数列{},=5,=10,则=A. B.7C.6 D.5.春秋时期孔子及其弟子所著的《论语·颜渊》中有句话:“非礼勿视,非礼勿听,非礼勿言,非礼勿动.”意思是:不符合礼的不看,不符合礼的不听,不符合礼的不说,不符合礼的不做.“非礼勿听”可以理解为:如果不合礼,那么就不听.从数学角度来说,“合礼”是“听”的()A.充分条件 B.必要条件C.充要条件 D.既不充分也不必要条件6.已知双曲线:的左、右焦点分别为,,且,点是的右支上一点,且,,则双曲线的方程为()A. B.C. D.7.已知等比数列中,,则这个数列的公比是()A.2 B.4C.8 D.168.设椭圆C:的左、右焦点分别为、,P是C上的点,⊥,∠=,则C的离心率为A. B.C. D.9.已知两直线方程分别为l1:x+y=1,l2:ax+2y=0,若l1⊥l2,则a=()A2 B.-2C. D.10.圆关于直线l:对称的圆的方程为()A. B.C. D.11.圆心在x轴上且过点的圆与y轴相切,则该圆的方程是()A. B.C. D.12.方程表示的曲线经过的一点是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的图象上有一点,则曲线在点处的切线方程为______.14.已知椭圆的右顶点为A,上顶点为B,且直线l与椭圆交于C,D两点,若直线l直线AB,设直线AC,BD的斜率分别为,,则的值为___________.15.已知对任意正实数m,n,p,q,有如下结论成立:若,则有成立,现已知椭圆上存在一点P,,为其焦点,在中,,,则椭圆的离心率为______16.若函数在[1,3]单调递增,则a的取值范围___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线l:x-y+2=0,一个圆的圆心C在x轴正半轴上,且该圆与直线l和y轴均相切(1)求该圆的方程;(2)若直线x+my-1=0与圆C交于A、B两点,且|AB|=,求m的值18.(12分)已知函数,(1)求的单调区间;(2)当时,求证:在上恒成立19.(12分)2022北京冬奥会即将开始,北京某大学鼓励学生积极参与志愿者的选拔.某学院有6名学生通过了志愿者选拔,其中4名男生,2名女生(1)若从中挑选2名志愿者,求入选者正好是一名男生和一名女生的概率;(2)若从6名志愿者中任选3人负责滑雪项目服务岗位,那么现将6人分为A、B两组进行滑雪项目相关知识及志愿者服务知识竞赛,共赛10局.A、B两组分数(单位:分)如下:A:125,141,140,137,122,114,119,139,121,142B:126,115,143,126,143,115,139,139,115,139从统计学角度看,应选择哪个组更合适?理由是什么?20.(12分)在二项式的展开式中,______.给出下列条件:①若展开式前三项的二项式系数的和等于46;②所有奇数项的二项式系数的和为256.试在上面两个条件中选择一个补充在上面的横线上,并解答下列问题:(1)求展开式中二项式系数最大的项;(2)求展开式的常数项.21.(12分)如图1,在中,,,,分别是,边上的中点,将沿折起到的位置,使,如图2(1)求点到平面的距离;(2)在线段上是否存在一点,使得平面与平面夹角的余弦值为.若存在,求出长;若不存在,请说明理由22.(10分)已知抛物线C:的焦点为F,为抛物线C上一点,且(1)求抛物线C的方程:(2)若以点为圆心,为半径圆与C的准线交于A,B两点,过A,B分别作准线的垂线交抛物线C于D,E两点,若,证明直线DE过定点
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分别令代入已知关系式,再两式求和即可求解.【详解】根据,令时,整理得:令x=2时,整理得:由①+②得,,所以.故选:D.2、D【解析】根据抛物线的定义及题意可知3x0=x0+,得出x0求得p,即可得答案【详解】由题意,3x0=x0+,∴x0=∴∵p>0,∴p=2.故选D【点睛】本题主要考查了抛物线的定义和性质.考查了考生对抛物线定义的掌握和灵活应用,属于基础题3、D【解析】由双曲线的方程及双曲线的离心率即可求解.【详解】解:因为双曲线,所以,所以双曲线的离心率,故选:D.4、A【解析】由等比数列的性质知,a1a2a3,a4a5a6,a7a8a9成等比数列,所以a4a5a6=故答案为考点:等比数列的性质、指数幂的运算、根式与指数式的互化等知识,转化与化归的数学思想5、B【解析】如果不合礼,那么就不听.转化为它的逆否命题.即可判断出答案.【详解】如果不合礼,那么就不听的逆否命题为:如果听,那么就合理.故“合礼”是“听”的必要条件.故选:B.6、B【解析】画出图形,利用已知条件转化求解,关系,利用,解得,即可得到双曲线的方程【详解】由题意双曲线的图形如图,连接与轴交于点,设,,因为,所以,因为,所以,则,因为点是的右支上一点,所以,所以,则,因为,所以,,由勾股定理可得:,即,解得,则,所以双曲线的方程为:故选:B7、A【解析】直接利用公式计算即可.【详解】设等比数列的公比为,由已知,,所以,解得.故选:A8、D【解析】详解】由题意可设|PF2|=m,结合条件可知|PF1|=2m,|F1F2|=m,故离心率e=选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.9、B【解析】直接利用直线垂直公式计算得到答案.【详解】因为l1⊥l2,所以k1k2=-1,即-=1,解得a=-2.故选:【点睛】本题考查了根据直线垂直计算参数,属于简单题.10、A【解析】首先求出圆的圆心坐标与半径,再设圆心关于直线对称的点的坐标为,即可得到方程组,求出、,即可得到圆心坐标,从而求出对称圆的方程;【详解】解:圆的圆心为,半径,设圆心关于直线对称的点的坐标为,则,解得,即圆关于直线对称的圆的圆心为,半径,所以对称圆的方程为;故选:A11、A【解析】根据题意设出圆的方程,列式即可求出【详解】依题可设圆的方程为,所以,解得即圆的方程是故选:A12、C【解析】当时可得,可得答案.【详解】当时可得所以方程表示的曲线经过的一点是,且其它点都不满足方程,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用导数求得为增函数,根据,求得,进而求得,得出即在点处的切线的斜率,再利用直线的点斜式方程,即可求解【详解】由题意,点在曲线上,可得,又由函数,则,所以函数在上为增函数,且,所以,因为,所以,即在点处的切线的斜率为2,所以曲线在点的切线方程为,即.故答案为:【点睛】本题主要考查了利用导数求解曲线在某点处的切线方程,其中解答中熟记导数的几何意义,以及导数的运算公式,结合直线的点斜式方程是解答的关键,着重考查了推理与运算能力14、##0.25【解析】求出点A,B坐标,设出直线l的方程,联立直线l与椭圆方程,借助韦达定理即可计算作答.【详解】依题意,点,直线AB斜率为,因直线l直线AB,则设直线l方程为:,,由消去y并整理得:,,解得,于是有或,设,则,有,因此,,所以的值为.故答案:15、【解析】根据正弦定理,结合题意,列出方程,代入数据,化简即可得答案.详解】由题意得:,所以,所以,解得.故答案为:16、【解析】由在区间上恒成立来求得的取值范围.【详解】依题意在区间上恒成立,在上恒成立,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)0【解析】(1)设出圆心坐标,利用题干条件得到方程,求出,从而求出该圆的方程;(2)利用点到直线距离公式及垂径定理进行求解.【小问1详解】设圆心为,,则由题意得:,解得:或(舍去),故该圆的方程为【小问2详解】圆心到直线的距离为,由垂径定理得:,解得:18、(1)单调减区间为,单调增区间为;(2)证明见解析.【解析】(1)求得,根据其正负,即可判断函数单调性从而求得函数单调区间;(2)根据题意,转化目标不等式为,分别构造函数,,利用导数研究其单调性,即可证明.【小问1详解】因为,故可得,又为单调增函数,令,解得,故当时,;当时,,故的单调减区间为,单调增区间为.【小问2详解】当时,,要证,即证,又,则只需证,即证,令,,当时,,单调递增,当时,,单调递减,故当时,取得最大值;令,,又为单调增函数,且时,,当时,,单调递减,当时,,单调递增,故当时,取得最小值.则,且当时,同时取得最小值和最大值,故,即,也即时恒成立.【点睛】本题考察利用导数求函数的单调区间,以及利用导数研究恒成立问题;处理本题的关键是合理转化目标式,属中档题.19、(1)(2)答案见详解【解析】(1):把4名男生和2名女生编号后用列举法写出任选2名的所有基本事件,同时可得出,两人是一男一女的基本事件,计数后可计算概率;(2):求出两组数据的均值和方差,比较可得【小问1详解】设4名男生分别用A,B,C,D表示:2名女生分别用1,2表示.基本事件为:,,,,,,,,,,,,共15种,所以所求概率为;【小问2详解】A组数据的平均数,B组数据的平均数,A组数据的方差,B组数据的方差,所以选择A队.理由:A、B两队平均数相同,且,A组成绩波动小20、(1),;(2).【解析】选择①:,利用组合数公式,计算即可;选择②:转化为,计算即可(1)由于共9项,根据二项式系数性质,二项式系数最大的项为第5项和第6项,利用通项公式计算即可;(2)写出展开式的通项,令,即得解【详解】选择①.,即,即,即,解得或(舍去).选择②.,即,解得.(1)展开式中二项式系数最大的项为第5项和第6项,,.(2)展开式的通项为,令,得,所以展开式中常数项为第7项,常数项为.21、(1)(2)存在,【解析】(1)根据题意分别由已知条件计算出的面积和的面积,利用求解,(2)如图建立空间直角坐标系,设,然后求出平面与平面的法向量,利用向量平夹角公式列方程可求得结果小问1详解】在中,,因为,分别是,边上的中点,所以∥,,所以,所以,因为,所以平面,所以平面,因为平面,所以,所以,因为平面,平面,所以平面平面,因为,所以,因为,所以是等边三角形,取的中点,连接,则,,因为平面平面,平面平面,平面,所以平面,中,,所以边上的高为,所以,在梯形中,,设点到平面的距离为,因,所以,所以,得,所以点到平面的距离为【小问2详解】由(1)可知平面,,所以以为原点,建立如图所示的空间直角坐标系,则,设,则,设平面的法向量为,则,令,则,设平面的法向量为,则,令,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沥青混凝土项目管理优化措施
- 2025年医疗机构上半年服务质量总结范文
- 2025年科技公司上半年总结及下半年工作计划
- 驻场人员安全管理流程
- 副科小组考试试题及答案
- 副高考试试题及答案
- 广西安全员b类考试试题及答案
- 高职口腔实操考试试题及答案
- 函授自考考试试题及答案
- 公共基础知识考试试题及答案
- 【武汉大学】2025DeepSeek驱动下的地图生成报告
- 高空作业简答试题及答案
- 通信服务公司管理制度
- 2025年班组安全培训考试试题ab卷
- T-CHSA 082-2024 上颌窦底提升专家共识
- 《集中用餐单位落实食品安全主体责任监督管理规定》解读与培训
- 安徽省示范高中皖北协作区2025届高三下学期第27届联考(一模)数学试题 含解析
- 食品安全管理制度文本(完整版)餐饮
- 传染病防控与报告课件
- 食堂食品卫生管理领导小组及职责
- 电厂安全管理制度
评论
0/150
提交评论