版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京第十二中学2025届高一数学第一学期期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的定义域和值域都是,则()A. B.C.1 D.2.已知直线与直线平行,则的值为A.1 B.3C.-1或3 D.-1或13.如图是一个几何体的三视图,则此几何体的直观图是.A. B.C. D.4.已知函数,则在下列区间中必有零点的是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)5.设,若直线与直线平行,则的值为A. B.C.或 D.或6.专家对某地区新冠肺炎爆发趋势进行研究发现,从确诊第一名患者开始累计时间(单位:天)与病情爆发系数之间,满足函数模型:,当时,标志着疫情将要大面积爆发,则此时约为()(参考数据:)A. B.C. D.7.“”是“”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件8.设函数,则下列函数中为奇函数的是()A. B.C. D.9.已知扇形的面积为,扇形圆心角的弧度是,则扇形的周长为()A. B.C. D.10.甲、乙二人参加某体育项目训练,近期的八次测试得分情况如图,则下列结论正确的是()A.甲得分的极差大于乙得分的极差 B.甲得分的75%分位数大于乙得分的75%分位数C.甲得分的平均数小于乙得分的平均数 D.甲得分的标准差小于乙得分的标准差二、填空题:本大题共6小题,每小题5分,共30分。11.命题“”的否定是________12.已知函数,若函数恰有三个不同的零点,则实数k的取值范围是_____________13.设则__________.14.求值:2+=____________15.已知函数且(1)若函数在区间上恒有意义,求实数的取值范围;(2)是否存在实数,使得函数在区间上为增函数,且最大值为?若存在,求出的值;若不存在,请说明理由16.若三棱锥中,,其余各棱长均为5,则三棱锥内切球的表面积为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当时,解关于的不等式;(2)请判断函数是否可能有两个零点,并说明理由;(3)设,若对任意的,函数在区间上的最大值与最小值的差不超过1,求实数的取值范围.18.某旅游风景区发行的纪念章即将投放市场,根据市场调研情况,预计每枚该纪念章的市场价y(单位:元)与上市时间x(单位:天)的数据如下:上市时间x天2620市场价y元10278120(1)根据上表数据,从下列函数中选取一个恰当的函数描述该纪念章的市场价y与上市时间x的变化关系并说明理由:①;②;③;(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格;(3)利用你选取的函数,若存在,使得不等式成立,求实数k的取值范围.19.已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.求:(1)求圆的方程;(2)设直线与圆相交于两点,求实数的取值范围;20.已知函数.(1)求函数的定义域;(2)若函数的最小值为,求的值.21.如图,已知等腰梯形中,,,是的中点,,将沿着翻折成,使平面平面.(1)求证:平面;(2)求与平面所成的角;(3)在线段上是否存在点,使得平面,若存在,求出的值;若不存在,说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】分和,利用指数函数的单调性列方程组求解.【详解】当时,,方程组无解当时,,解得故选:A.2、A【解析】因为两条直线平行,所以:解得m=1故选A.点睛:本题主要考查直线的方程,两条直线平行与斜率的关系,属于简单题.对直线位置关系的考查是热点命题方向之一,这类问题以简单题为主,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1),需检验不重合;(2),这类问题尽管简单却容易出错,特别是容易遗忘斜率不存在的情况,这一点一定不能掉以轻心.3、D【解析】由已知可得原几何体是一个圆锥和圆柱的组合体,上部分是一个圆锥,下部分是一个圆柱,而且圆锥和圆柱的底面积相等,故此几何体的直观图是:故选D4、B【解析】根据存在零点定理,看所给区间的端点值是否异号,,,,所以,那么函数的零点必在区间考点:函数的零点5、B【解析】由a(a+1)﹣2=0,解得a.经过验证即可得出【详解】由a(a+1)﹣2=0,解得a=﹣2或1经过验证:a=﹣2时两条直线重合,舍去∴a=1故选B【点睛】本题考查了两条直线平行的充要条件,考查了推理能力与计算能力,属于基础题6、B【解析】根据列式求解即可得答案.【详解】解:因为,,所以,即,所以,由于,故,所以,所以,解得.故选:B.【点睛】本题解题的关键在于根据题意得,再结合已知得,进而根据解方程即可得答案,是基础题.7、B【解析】利用充分条件,必要条件的定义即得.【详解】由可推出,由,即或,推不出,故“”是“”的充分不必要条件.故选:B.8、A【解析】分别求出选项的函数解析式,再利用奇函数的定义即可得选项.【详解】由题意可得,对于A,是奇函数,故A正确;对于B,不是奇函数,故B不正确;对于C,,其定义域不关于原点对称,所以不是奇函数,故C不正确;对于D,,其定义域不关于原点对称,不是奇函数,故D不正确.故选:A.9、A【解析】根据扇形的面积公式和弧长的计算公式,求得弧长和半径,即可求得结果.【详解】设扇形的半径为,弧长为.由题意:,解得,所以扇形的周长为,故选:A.【点睛】本题考查扇形的弧长和面积公式,属基础题.10、B【解析】根据图表数据特征进行判断即可得解.【详解】乙组数据最大值29,最小值5,极差24,甲组最大值小于29,最小值大于5,所以A选项说法错误;甲得分的75%分位数是20,,乙得分的75%分位数17,所以B选项说法正确;甲组具体数据不易看出,不能判断C选项;乙组数据更集中,标准差更小,所以D选项错误故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由否定的定义写出即可.【详解】命题“”的否定是“”故答案为:12、【解析】根据函数解析式画出函数图象,则函数的零点个数,转化为函数与有三个交点,结合函数图象判断即可;【详解】解:因为,函数图象如下所示:依题意函数恰有三个不同的零点,即函数与有三个交点,结合函数图象可得,即;故答案为:13、【解析】先求,再求的值.【详解】由分段函数可知,.故答案为:【点睛】本题考查分段函数求值,属于基础题型.14、-3【解析】利用对数、指数的性质和运算法则求解【详解】解:()lg(1)lg1[()3]2+()02+1=﹣3故答案为﹣3【点睛】本题考查对数式、指数式的化简求值,是基础题,解题时要认真审题,注意对数、指数的性质、运算法则的合理运用15、(1)(2)存在;(或)【解析】(1)由题意,得在上恒成立,参变分离得恒成立,再令新函数,判断函数的单调性,求解最大值,从而求出的取值范围;(2)在(1)的条件下,讨论与两种情况,利用复合函数同增异减的性质求解对应的取值范围,再利用最大值求解参数,并判断是否能取到.【小问1详解】由题意,在上恒成立,即在恒成立,令,则在上恒成立,令所以函数在在上单调递减,故则,即的取值范围为.【小问2详解】要使函数在区间上为增函数,首先在区间上恒有意义,于是由(1)可得,①当时,要使函数在区间上为增函数,则函数在上恒正且为增函数,故且,即,此时的最大值为即,满足题意②当时,要使函数在区间上为增函数,则函数在上恒正且为减函数,故且,即,此时的最大值为即,满足题意综上,存在(或)【点睛】一般关于不等式在给定区间上恒成立的问题都可转化为最值问题,参变分离后得恒成立,等价于;恒成立,等价于成立.16、【解析】由题意得,易知内切球球心到各面的距离相等,设为的中点,则在上且为的中点,在中,,所以三棱锥内切球的表面积为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)不可能,理由见解析(3)【解析】(1)结合对数函数的定义域,解对数不等式求得不等式的解集.(2)由,求得,,但推出矛盾,由此判断没有两个零点.(3)根据函数在区间上的最大值与最小值的差不超过1列不等式,结合分离常数法来求得的取值范围.【小问1详解】当时,不等式可化为,有,有解得,故不等式,的解集为.【小问2详解】令,有,有,,,,则,若函数有两个零点,记,必有,,且有,此不等式组无解,故函数不可能有两个零点.【小问3详解】当,,时,,函数单调递减,有,有,有有,整理为,由对任意的恒成立,必有解得,又由,可得,由上知实数的取值范围为.18、(1)选择,理由见解析,(2)上市天数10天,最低价格70元,(3)【解析】(1)根据函数的单调性选取即可.(2)把点代入中求解参数,再根据二次函数的最值求解即可.(3)参变分离后再求解最值即可.【详解】(1)随着时间x的增加,y的值先减后增,而所给的三个函数中和显然都是单调函数,不满足题意,∴选择.(2)把点代入中,得,解得,∴当时,y有最小值故当纪念章上市10天时,该纪念章的市场价最低,最低市场价为70元,(3)由题意,令,若存在使得不等式成立,则须,又,当且仅当时,等号成立,所以.【点睛】本题主要考查了二次函数模型解决实际问题的题型,需要根据题意求解对应的二次函数式再分析最值与求参数.属于中等题型.19、(Ⅰ);(Ⅱ).【解析】(1)求圆的方程有两种方法:①几何法,通过研究圆的性质进而求出圆的基本量.②代数法,即设出圆的方程,用待定系数法求解,利用待定系数法的关键是建立关于a,b,r或D,E,F的方程组.本题利用几何性质;(2)利用圆心到直线的距离可判断直线与圆的位置关系;也可利用直线的方程与圆的方程联立后得到的一元二次方程的判别式来判断直线与圆的位置关系试题解析:(1)设圆心为,因圆C与直线相切,故,又,所以所求圆的方程为(2)因直线与圆M相交于两点,所以圆心到直线的距离小于半径故,解得考点:圆的方程及直线与圆的位置关系20、(1);(2).【解析】(1)由即可求解;(2)先整理,利用复合函数单调性即可求出的最小值,令最小值等于4解方程即可.【详解】(1)若有意义,则,解得,故的定义域为;(2)由于令,则∵时,在上是减函数,∴又,则,即,解得或(舍)故若函数的最小值为,则.【点睛】关键点点睛:本题在解题的过程中要注意定义域,关键在于的范围和的单调性.21、(1)证明见解析;(2)30°;(3)存在,.【解析】(1)首先根据已知条件并结合线面垂直的判定定理证明平面,再证明即可求解;(2)根据(1)中结论找出所求角,再结合已知条件即可求解;(3)首先假设存在,然后根据线面平行的性质以及已
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度绿化工程合同:某物业管理公司与绿化公司的合作
- 二零二四年房产众筹投资合同
- 餐厨设备采购合同
- 混凝土砌块采购合同
- 二零二四年度房地产活动信息技术支持合同3篇
- 2024年度企业员工工作服定制合同2篇
- 2024年度版权许可合同:某音乐制作人与歌手之间的版权许可协议
- 停车场道闸系统安装合同
- 2024年度物联网技术研究与应用服务合同2篇
- 2024年度新能源汽车充电设施防雷设计与施工合同2篇
- 小学校本课程实施方案-校本课程实施方案8篇
- 2024版肺结核治疗指南
- 江苏省无锡市经开区2024-2025学年上学期九年级期中考试数学试题
- 2024年智能化工程专业分包合同
- 六年级道德与法治上册 第三单元 我们的国家机构 5《国家机构有哪些》教案2 新人教版
- 体育场馆安全管理与风险排查治理制度
- 2024年消防安全知识培训
- 2024年商标使用许可协议:国际知名品牌在中国市场授权
- 2024年北京第二次高中学业水平合格信息技术试卷试(含答案详解)
- 餐饮服务电子教案 学习任务3 餐巾折花技能(4)-餐巾折花综合实训
- 2024年全国半导体行业职业技能竞赛(半导体芯片制造工赛项)理论考试题库(含答案)
评论
0/150
提交评论