江西省五市八校协作体2025届高二数学第一学期期末经典试题含解析_第1页
江西省五市八校协作体2025届高二数学第一学期期末经典试题含解析_第2页
江西省五市八校协作体2025届高二数学第一学期期末经典试题含解析_第3页
江西省五市八校协作体2025届高二数学第一学期期末经典试题含解析_第4页
江西省五市八校协作体2025届高二数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省五市八校协作体2025届高二数学第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等差数列中,,则()A.6 B.3C.2 D.12.我国古代数学著作《算法统宗》中有这样一段记载:“一百八十九里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人共行走了189里的路程,第一天健步行走,从第二天起,因脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天行走的路程为()A.108里 B.96里C.64里 D.48里3.已知直线交圆于A,B两点,若点满足,则直线l被圆C截得线段的长是()A.3 B.2C. D.44.双曲线的焦点坐标是()A. B.C. D.5.已知中,内角所对的边分别,若,,,则()A. B.C. D.6.已知是定义在上的函数,且对任意都有,若函数的图象关于点对称,且,则()A. B.C. D.7.已知等比数列的前项和为,则关于的方程的解的个数为()A.0 B.1C.无数个 D.0或无数个8.已知随机变量X,Y满足,,且,则的值为()A.0.2 B.0.3C.0..5 D.0.69.如图所示,已知是椭圆的左、右焦点,为椭圆的上顶点,在轴上,,且是的中点,为坐标原点,若点到直线的距离为3,则椭圆的方程为()A B.C. D.10.在四面体OABC中,点M在线段OA上,且,N为BC中点,已知,,,则等于()A. B.C. D.11.函数是偶函数且在上单调递减,,则的解集为()A. B.C. D.12.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若在上是减函数,则实数a的取值范围是_________.14.已知B(,0)是圆A:内一点,点C是圆A上任意一点,线段BC的垂直平分线与AC相交于点D.则动点D的轨迹方程为_________________.15.函数在处切线的斜率为_____16.若函数在处有极值,则的值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)数列满足,,.(1)证明:数列是等差数列;(2)设,求数列的前项和.18.(12分)如图,四边形ABCD是正方形,四边形BEDF是菱形,平面平面.(1)证明:;(2)若,且平面平面BEDF,求平面ADE与平面CDF所成的二面角的正弦值.19.(12分)某校为了了解在校学生的支出情况,组织学生调查了该校2014年至2020年学生的人均月支出y(单位:百元)的数据如下表:年份2014201520162017201820192020年份代号t1234567人均月支出y3.94.34.65.45.86.26.9(1)求2014年至2020年中连续的两年里,两年人均月支出都超过4百元的概率;(2)求y关于t的线性回归方程;(3)利用(2)中的回归方程,预测该校2022年的人均月支出.附:最小二乘估计公式:,20.(12分)如图,一个湖的边界是圆心为的圆,湖的一侧有一条直线型公路,湖上有桥(是圆的直径).规划在公路上选两个点、,并修建两段直线型道路、.规划要求,线段、上的所有点到点的距离均不小于圆的半径.已知点到直线的距离分别为和(为垂足),测得,,(单位:百米).(1)若道路与桥垂直,求道路的长;(2)在规划要求下,点能否选在处?并说明理由.21.(12分)已知等差数列的前项和为,且,(1)求数列的通项公式;(2)若数列满足,求数列的前项和22.(10分)已知函数,(1)求曲线在点处的切线方程;(2)若对任意的,恒成立,求实数的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据等差数列下标性质进行求解即可.【详解】因为是等差数列,所以,故选:B2、B【解析】根据题意,记该人每天走的路程里数为,分析可得每天走的路程里数构成以的为公比的等比数列,由求得首项即可【详解】解:根据题意,记该人每天走的路程里数为,则数列是以的为公比的等比数列,又由这个人走了6天后到达目的地,即,则有,解可得:,故选:B.【点睛】本题考查数列的应用,涉及等比数列的通项公式以及前项和公式的运用,注意等比数列的性质的合理运用.3、B【解析】由题设知为圆的圆心且A、B在圆上,根据已知及向量数量积的定义求的大小,进而判断△的形状,即可得直线l被圆C截得线段的长.【详解】∵点为圆的圆心且A、B在圆上,又,∴,∴,又,∴,故△为等边三角形,∴直线l被圆C截得线段的长是2故选:B4、B【解析】根据双曲线的方程,求得,结合双曲线的几何性质,即可求解.【详解】由题意,双曲线,可得,所以,且双曲线的焦点再轴上,所以双曲线的焦点坐标为.故选:B.5、B【解析】利用正弦定理可直接求得结果.【详解】在中,由正弦定理得:.故选:B.6、D【解析】令,代入可得,即得,再由函数的图象关于点对称,判断得函数的图象关于点对称,即,则化简可得,即函数的周期为,从而代入求解.【详解】令,得,即,所以,因为函数的图象关于点对称,所以函数的图象关于点对称,即,所以,即,可得,则,故选:D.第II卷(非选择题7、D【解析】利用等比数列的求和公式讨论公比的取值即得.【详解】设等比数列的公比为,当时,,因为,所以无解,即方程的解的个数为0,当时,,所以时,方程有无数个偶数解,当时,方程无解,综上,关于的方程的解的个数为0或无数个.故选:D.8、D【解析】利用正态分布的计算公式:,【详解】且又故选:D9、D【解析】由题设可得,直线的方程为,点线距离公式表示到直线的距离,又联立解得即可得出答案.【详解】且,则△是等边三角形,设,则①,∴直线方程为,即,∴到直线的距离为②,又③,联立①②③,解得,,故椭圆方程为.故选:D.10、B【解析】根据空间向量基本定理结合已知条件求解【详解】因为N为BC中点,所以,因为M在线段OA上,且,所以,所以,故选:B11、D【解析】分析可知函数在上为增函数,且有,将所求不等式变形为,可得出关于实数的不等式,由此可解得实数的取值范围.【详解】因为函数是偶函数且在上单调递减,则该函数在上为增函数,且,由可得,所以,,可得或,解得或.因此,不等式的解集为.故选:D.12、D【解析】根据抛物线的定义得出当点P在抛物线的顶点时,|PF|取最小值.【详解】根据题意,设抛物线y=2x2上点P到准线的距离为d,则有|PF|=d,抛物线的方程为y=2x2,即x2=y,其准线方程为y=-,∴当点P在抛物线的顶点时,d有最小值,即|PF|min=.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据导数的性质,结合常变量分离法进行求解即可.【详解】,因为在上是减函数,所以在上恒成立,即,当时,的最小值为,所以,故答案为:14、【解析】利用椭圆的定义可得轨迹方程.【详解】连接,由题意,,则,由椭圆的定义可得动点D的轨迹为椭圆,其焦点坐标为,长半轴长为2,故短半轴长为1,故轨迹方程为:.故答案为:.15、1【解析】求得函数的导数,计算得,即可得到切线的斜率【详解】由题意,函数,则,所以,即切线的斜率为1,故答案为:116、2或6【解析】由解析式得到导函数,结合是函数极值点,即可求的值.【详解】由,得,因为函数在处有极值,所以,即,解得2或6.经检验,2或6满足题意.故答案为:2或6.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】(1)将的两边同除以,得到,由等差数列的定义,即可作出证明;(2)有(1)求出,利用错位相减法即可求解数列的前项和.试题解析:(1)证明:由已知可得=+1,即-=1.所以是以=1为首项,1为公差的等差数列(2)由(1)得=1+(n-1)·1=n,所以an=n2.从而bn=n·3n.Sn=1·31+2·32+3·33+…+n·3n,①3Sn=1·32+2·33+…+(n-1)·3n+n·3n+1.②①-②得-2Sn=31+32+…+3n-n·3n+1=-n·3n+1=.所以Sn=.点睛:本题主要考查了等差数列的定义、等差数列的判定与证明和数列的求和,着重考查了学生分析问题和解答问题的能力,本的解答中利用等差数列的定义得到数列为等差数列,求解的表达式,从而化简得到,利用乘公比错位相减法求和中,准确计算是解答的一个难点.18、(1)证明见解析;(2).【解析】(1)连接交于点,连接,要证明,只需证明平面即可;(2)以D为原点建系,分别求出平面与平面的法向量,再利用向量的夹角公式计算即可得到答案.【详解】(1)证明:如图,连接交于点,连接四边形为正方形,,且为的中点又四边形为菱形,平面平面又平面OAE.(2)解:如图,建立空间直角坐标系,不妨设,则,,则由(1)得又平面平面,平面平面,平面ABCD,故,同理,设为平面的法向量,为平面的法向量,则故可取,同理故可取,所以设平面与平面所成的二面角为,则,所以平面与平面所成的二面角的正弦值为19、(1);(2);(3)7.8百元.【解析】(1)应用列举法,结合古典概型计算公式进行进行求解即可;(2)根据题中所给的公式进行计算求解即可;(3)根据(2)的结论,利用代入法进行求解即可.【小问1详解】2014年至2020年中连续的两年有、、、、、共6种组合,其中只有不满足连续两年人均月支出都超过4百元,所以连续两年人均月支出都超过4百元的概率为;【小问2详解】由已知数据分别求出公式中的量.,,,,所求回归方程为;小问3详解】由(2)知,,将2022年的年份代号代入(2)中的回归方程,得,故预测该校2022年人均月支出为7.8百元.20、(1)15(百米)(2)点选在处不满足规划要求,理由见解析【解析】(1)建立适当的坐标系,得圆及直线的方程,进而得解.(2)不妨点选在处,求方程并求其与圆的交点,在线段上取点不符合条件,得结论.【小问1详解】如图,过作,垂足为.以为坐标原点,直线为轴,建立平面直角坐标系.因为为圆的直径,,所以圆的方程为.因为,,所以,故直线的方程为,则点,的纵坐标分别为3,从而,,直线的斜率为.因为,所以直线的斜率为,直线的方程为.令,得,,所以.因此道路的长为15(百米).【小问2详解】若点选在处,连结,可求出点,又,所以线段.由解得或,故不妨取,得到在线段上的点,因为,所以线段上存在点到点的距离小于圆的半径5.因此点选在处不满足规划要求.21、(1);(2).【解析】(1)设等差数列的公差为,根据已知条件可得出关于、的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论