版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届天津市静海区大邱庄中学高一上数学期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数f(x)=设f(0)=a,则f(a)=()A.-2 B.-1C. D.02.下列函数中哪个是幂函数()A. B.C. D.3.下列函数中,在区间上为减函数的是()A. B.C. D.4.已知三个顶点的坐标分别为,,,则外接圆的标准方程为()A. B.C. D.5.函数f(x)=2ax+1–1(a>0,且a≠1)恒过定点A.(–1,–1) B.(–1,1)C.(0,2a–1) D.(0,1)6.已知,条件:,条件:,则是的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件7.已知集合,,则A. B.C. D.8.对于每个实数x,设取两个函数中的较小值.若动直线y=m与函数的图象有三个不同的交点,它们的横坐标分别为,则的取值范围是()A. B.C. D.9.我国东汉数学家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示,在“赵爽弦图”中,若,,,则()A. B.C. D.10.某地一年之内12个月的降水量从小到大分别为:46,48,51,53,53,56,56,56,58,64,66,71,则该地区的月降水量20%分位数和75%分位数为()A.51,58 B.51,61C.52,58 D.52,61二、填空题:本大题共6小题,每小题5分,共30分。11.在中,边上的中垂线分别交于点若,则_______12.《九章算术》是我国古代数学成就的杰出代表作,其中"方田"章给出了计算弧田面积时所用的经验公式,即弧田面积(弦×矢+矢2),弧田(如图)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”指圆弧顶到弦的距离(等于半径长与圆心到弦的距离之差),现有圆心角为2,半径为1米的弧田,按照上述经验公式计算所得弧田面积是_________平方米.(结果保留两位有效数字,参考数据:,)13.已知,,且,则的最小值为________.14.我国古代数学名著《九章算术》中相当于给出了已知球的体积V,求其直径d的一个近似公式.规定:“一个近似数与它准确数的差的绝对值叫这个近似数的绝对误差.”如果一个球体的体积为,那么用这个公式所求的直径d结果的绝对误差是___________.(参考数据:,结果精确到0.01)15.函数的值域为_______________.16.设函数,若函数在上的最大值为M,最小值为m,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(,),若函数在区间上的最大值为3,最小值为2.(1)求函数的解析式;(2)求在上的单调递增区间;(3)是否存在正整数,满足不等式,若存在,找出所有这样的,的值,若不存在,说明理由.18.如图,四面体中,平面,,,,.(Ⅰ)求四面体的四个面的面积中,最大的面积是多少?(Ⅱ)证明:在线段上存在点,使得,并求的值19.已知函数的值域为,函数.(Ⅰ)求;(Ⅱ)当时,若函数有零点,求的取值范围,并讨论零点的个数.20.已知函数f(x)是偶函数,且x≤0时,f(x)=-(其中e为自然对数的底数)(Ⅰ)比较f(2)与f(-3)大小;(Ⅱ)设g(x)=2(1-3a)ex+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,求实数a的取值范围.21.已知数列满足(,且),且,设,,数列满足.(1)求证:数列是等比数列并求出数列的通项公式;(2)求数列的前n项和;(3)对于任意,,恒成立,求实数m的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据条件先求出的值,然后代入函数求【详解】,即,故选:A2、A【解析】直接利用幂函数的定义判断即可【详解】解:幂函数是,,显然,是幂函数.,,都不满足幂函数的定义,所以A正确故选:A【点睛】本题考查了幂函数的概念,属基础题.3、D【解析】根据基本初等函数的单调性及复合函数单调性求解.【详解】当时,在上单调递减,所以在区间上为增函数;由指数函数单调性知在区间上单调递增;由在区间上为增函数,为增函数,可知在区间上为增函数;知在区间上为减函数.故选:D4、C【解析】先判断出是直角三角形,直接求出圆心和半径,即可求解.【详解】因为三个顶点的坐标分别为,,,所以,所以,所以是直角三角形,所以的外接圆是以线段为直径的圆,所以圆心坐标为,半径故所求圆的标准方程为故选:C5、B【解析】令x+1=0,求得x和y的值,从而求得函数f(x)=2ax+1–1(a>0,且a≠1)恒过定点的坐标【详解】令x+1=0,求得x=-1,且y=1,故函数f(x)=2ax+1–1(a>0且a≠1)恒过定点(-1,1),故选B.【点睛】】本题主要考查指数函数的单调性和特殊点,属于基础题6、C【解析】分别求两个命题下的集合,再根据集合关系判断选项.【详解】,则,,则,因为,所以是充分必要条件.故选:C7、C【解析】先写出A的补集,再根据交集运算求解即可.【详解】因为,所以,故选C.【点睛】本题主要考查了集合的补集,交集运算,属于容易题.8、C【解析】如图,作出函数的图象,其中,设与动直线的交点的横坐标为,∵图像关于对称∴∵∴∴故选C点睛:本题首先考查新定义问题,首先从新定义理解函数,为此解方程,确定分界点,从而得函数的具体表达式,画出函数图象,通过图象确定三个数中具有对称关系,,因此只要确定的范围就能得到的范围.9、C【解析】利用平面向量的线性运算及平面向量的基本定理求解即可【详解】∵∴∵∴=∴=,∴故选:C10、B【解析】先把每月的降水量从小到大排列,再根据分位数的定义求解.【详解】把每月的降水量从小到大排列为:46,48,51,53,53,56,56,56,58,64,66,71,,所以该地区月降水量的分位数为;所以该地区的月降水量的分位数为.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】设,则,,又,即,故答案为.12、【解析】由题设可得“弦”为,“矢”为,结合弧田面积公式求面积即可.【详解】由题设,“弦”为,“矢”为,所以所得弧田面积是.故答案为:.13、12【解析】,展开后利用基本不等式可求【详解】∵,,且,∴,当且仅当,即,时取等号,故的最小值为12故答案为:1214、05【解析】根据球的体积公式可求得准确直径,由近似公式可得近似直径,然后由绝对误差的定义即可求解.【详解】解:由题意,,所以,所以直径d结果的绝对误差是,故答案为:0.05.15、【解析】先求出,再结合二次函数的内容求解.【详解】由得,,故当时,有最小值,当时,有最大值.故答案为:.16、2【解析】令,证得为奇函数,从而可得在的最大值和最小值之和为0,进而可求出结果.【详解】设,定义域为,则,所以,即,所以为奇函数,所以在的最大值和最小值之和为0,令,则因为,所以函数的最大值为,最小值为,则,∴故答案为:2.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)存在,,或,或,【解析】(1)根据函数在区间上的最大值为3,最小值为2,利用正弦函数的最值求解;(2)利用正弦函数的单调性求解;(3)先化简不等式,再根据,为正整数求解.【小问1详解】解:∵,∴,∴,又∵m>0,最大值为3,最小值为2,∴,解得m=2,n=1.∴.【小问2详解】令,k∈Z,得到,k∈Z,当k=0时,,∴在[0,2]上的单调递增区间是.【小问3详解】由,得,∵a∈N*,b∈N*,∴a=1时,b=1或2;a=2时,b=1;a>2时,b不存在,∴所有满足题意a,b的值为:a=1,b=1或a=1,b=2或a=2,b=1.18、(Ⅰ);(Ⅱ)证明见解析.【解析】(1)易得,,,均为直角三角形,且的面积最大,进而求解即可;(2)在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连接BM,可证得AC⊥平面MBN,从而使得AC⊥BM,利用相似和平行求解即可.试题解析:(1)由题设AB=1,AC=2,BC=,可得,所以,由PA⊥平面ABC,BC、AB⊂平面ABC,所以,,所以,又由于PA∩AB=A,故BC⊥平面PAB,PB⊂平面PAB,所以,所以,,,均为直角三角形,且的面积最大,.(2)证明:在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连接BM.由PA⊥平面ABC知PA⊥AC,所以MN⊥AC由于BN∩MN=N,故AC⊥平面MBN.又BM⊂平面MBN,所以AC⊥BM.因为与相似,,从而NC=AC-AN=.由MN∥PA,得==.19、(Ⅰ);(Ⅱ)答案见详解.【解析】(Ⅰ)对分段函数求值域,分别求出每一段函数的值域,再求其并集即可;(Ⅱ)函数有零点,即表示方程有根,与函数图像有交点,因而将换元,利用二次函数性质求出其值域,再数形结合讨论零点个数即可.【详解】(Ⅰ)如下图所示:当时,;当时,,所以函数的值域为;(Ⅱ)若函数有零点,即方程有根,即与函数图像有交点,令,,当时,,此时,即函数值域为,故而:当时,函数有零点,且当或时,函数有一个零点;当时,函数有两个零点.【点睛】(1)对分段函数求值域,先求出每一段函数的值域,再求其并集即可,也可利用函数图像去求;(2)函数零点问题一般可以转换为方程的根,或者两函数图像交点的问题,在答题时,需要根据实际情况进行转换,本题利用了转化及数形结合的思想,属于中档题.20、(I);(II).【解析】(Ⅰ)由偶函数在时递减,时递增,即可判断(2)和的大小关系;(Ⅱ)由题意可得在时有且只有一个实根,可得在时有且只有一个实根,可令,则,求得导数判断单调性,计算可得所求范围【详解】解:(Ⅰ)函数f(x)是偶函数,且x≤0时,f(x)=-,可得f(x)在x<0时递减,x>0时递增,由f(-3)=f(3),可得f(2)<f(3),即有f(2)<f(-3);(Ⅱ)设g(x)=2(1-3a)ex+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,即为2(1-3a)ex+2a+=-在x>0时有且只有一个实根,可得3a=在x>0时有且只有一个实根,可令t=ex(t>1),则h(t)=,h′(t)=,在t>1时,h′(t)<0,h(t)递减,可得h(t)∈(0,),则3a∈(0,),即a∈(0,)另解:令t=ex(t>1),则h(t)==1+,可令k=4t+7(k>11),可得h(t)=1+,由3k+在k>11递增,可得h(t)在k>11递减,可得h(t)∈(0,),则3a∈(0,),即a∈(0,)【点睛】本题考查函数的奇偶性和单调性的判断和运用,考查函数方程的转化思想,以及构造函数法,运用导数判断单调性,考查化简整理的运算能力,属于中档题.21、(1)见解析(2)(3).【解析】(1)将式子写为:得证,再通过等比数列公式得到的通项公式.(2)根据(1)得到进而得到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度写字楼租赁协议书样本
- 聚焦租赁法规热点
- 陕西省铜川市(2024年-2025年小学五年级语文)统编版质量测试(上学期)试卷及答案
- 基于区块链的货运代理业务创新
- 面向对象管理器的性能优化
- 2024餐饮企业社会责任履行与可持续发展合同
- 竞争性定价在农业服务中的应用
- 2024年度拆除分包工程合同纠纷解决协议
- 04版电子商务平台运营与推广合同
- 2024年度玻璃制品专属销售代理合同with标的:定制玻璃家具
- 建筑公司合规性评价报告
- 促销策略课件
- 大数据和人工智能知识考试题库600题(含答案)
- 2023年上海机场集团有限公司校园招聘笔试题库及答案解析
- 勘察质量及安全保障措施
- 高保真音频功率放大器
- 架桥机安全教育培训试卷
- 临时工用工协议书简单版(7篇)
- 国家电网公司施工项目部标准化管理手册(2021年版)线路工程分册
- 马克·夏加尔课件
- 沧州市基层诊所基本公共卫生服务医疗机构卫生院社区卫生服务中心村卫生室地址信息
评论
0/150
提交评论