版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省二校高二数学第一学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2 B.3C.6 D.92.设点P是函数图象上任意一点,点Q的坐标,当取得最小值时圆C:上恰有2个点到直线的距离为1,则实数r的取值范围为()A. B.C. D.3.已知是双曲线的左焦点,圆与双曲线在第一象限的交点为,若的中点在双曲线的渐近线上,则此双曲线的离心率是()A. B.2C. D.4.已知,为双曲线:的焦点,为,(其中为双曲线半焦距),与双曲线的交点,且有,则该双曲线的离心率为()A. B.C. D.5.焦点坐标为,(0,4),且长半轴的椭圆方程为()A. B.C. D.6.已知直线,,点是抛物线上一点,则点到直线和的距离之和的最小值为()A.2 B.C.3 D.7.已知实数x,y满足约束条件,则的最大值为()A. B.0C.3 D.58.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆就是他的研究成果之一.指的是:已知动点与两定点的距离之比,那么点的轨迹就是阿波罗尼斯圆.已知动点的轨迹是阿波罗尼斯圆,其方程为,其中,定点为轴上一点,定点的坐标为,若点,则的最小值为()A. B.C. D.9.如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A. B.C. D.10.已知等差数列的前项和为,且,,则()A.3 B.5C.6 D.1011.“”是“直线与直线垂直”的A.充分必要条件 B.充分非必要条件C.必要不充分条件 D.既不充分也不必要条件12.如图是函数的导函数的图象,下列结论中正确的是()A.在上是增函数 B.当时,取得最小值C.当时,取得极大值 D.在上是增函数,在上是减函数二、填空题:本题共4小题,每小题5分,共20分。13.圆锥的母线长为2,母线所在直线与圆锥的轴所成角为,则该圆锥的侧面积大小为____________.(结果保留)14.已知直线与圆交于,两点,则的最小值为___________.15.曲线在处的切线方程为______.16.已知椭圆的右顶点为A,上顶点为B,且直线l与椭圆交于C,D两点,若直线l直线AB,设直线AC,BD的斜率分别为,,则的值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题:“,”,命题:“,”,若“且”为真命题,求实数的取值范围18.(12分)已知椭圆C:的左、右焦点分别为F1,F2,离心率为,椭圆C上点M满足(1)求椭圆C的标准方程:(2)若过坐标原点的直线l交椭圆C于P,Q两点,求线段PQ长为时直线l的方程19.(12分)已知椭圆C:的长轴长为,P是椭圆上异于顶点的一个动点,O为坐标原点,A为椭圆C的上顶点,Q为PA的中点,且直线PA与直线OQ的斜率之积恒为-2.(1)求椭圆C的方程;(2)若斜率为k且过上焦点F的直线l与椭圆C相交于M,N两点,当点M,N到y轴距离之和最大时,求直线l的方程.20.(12分)为落实国家扶贫攻坚政策,某地区应上级扶贫办的要求,对本地区所有贫困户每年年底进行收入统计,下表是该地区贫困户从2017年至2020年的收入统计数据:(其中y为贫困户的人均年纯收入)年份2017年2018年2019年2020年年份代码1234人均年纯收入y/百元25283235(1)在给定的坐标系中画出A贫困户的人均年纯收入关于年份代码的散点图;(2)根据上表数据,用最小二乘法求出y关于x的线性回归方程,并估计A贫困户在年能否脱贫.(注:假定脱贫标准为人均年纯收入不低于元)参考公式:,参考数据:,.21.(12分)已知直线和的交点为P,求:(1)过点P且与直线垂直的直线l的方程;(2)以点P为圆心,且与直线相交所得弦长为12的圆的方程;(3)从下面①②两个问题中选一个作答,①若直线l过点,且与两坐标轴的正半轴所围成的三角形面积为,求直线l的方程②求圆心在直线上,与x轴相切,被直线截得的弦长的圆的方程注:如果选择两个问题分别作答,按第一个计分22.(10分)红铃虫是棉花的主要害虫之一,也侵害木棉、锦葵等植物.为了防治虫害,从根源上抑制害虫数量.现研究红铃虫的产卵数和温度的关系,收集到7组温度和产卵数的观测数据于表Ⅰ中.根据绘制的散点图决定从回归模型①与回归模型②中选择一个来进行拟合表Ⅰ温度x/℃20222527293135产卵数y/个711212465114325(1)请借助表Ⅱ中的数据,求出回归模型①的方程:表Ⅱ(注:表中)18956725.271627810611.06304041.86825.09(2)类似的,可以得到回归模型②的方程为,试求两种模型下温度为时的残差;(3)若求得回归模型①的相关指数,回归模型②的相关指数,请结合(2)说明哪个模型的拟合效果更好参考数据:.附:回归方程中,相关指数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F,由抛物线的定义知,即,解得.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.2、C【解析】先求出代表的是以为圆心,2为半径的圆的位于x轴下方部分(包含x轴上的部分),数形结合得到取得最小值时a的值,得到圆心C,利用点到直线距离求出圆心C到直线的距离,数形结合求出半径r的取值范围.【详解】,两边平方得:,即点P在以为圆心,2为半径的圆的位于x轴下方部分(包含x轴上的部分),如图所示:因为Q的坐标为,则在直线,过点A作⊥l于点,与半圆交于点,此时长为的最小值,则,所以直线:,与联立得:,所以,解得:,则圆C:,则,圆心到直线的距离为,要想圆C上恰有2个点到直线的距离为1,则.故选:C3、A【解析】根据双曲线的几何性质和平面几何性质,建立关于a,b,c的方程,从而可求得双曲线的离心率得选项.【详解】由题意可设右焦点为,因为,且圆:,所以点在以焦距为直径的圆上,则,设的中点为点,则为的中位线,所以,则,又点在渐近线上,所以,且,则,,所以,所以,则在中,可得,,即,解得,所以,故选:A【点睛】方法点睛:(1)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,利用和转化为关于e的方程或不等式,通过解方程或不等式求得离心率的值或取值范围(2)对于焦点三角形,要注意双曲线定义的应用,运用整体代换的方法可以减少计算量4、B【解析】根据求得的关系,结合双曲线的定义以及勾股定理,即可求得的等量关系,再求离心率即可.【详解】根据题意,连接,作图如下:显然为直角三角形,又,又点在双曲线上,故可得,解得,由勾股定理可得:,即,即,,故双曲线的离心率为.故选:B.5、B【解析】根据题意可知,即可由求出,再根据焦点位置得出椭圆方程【详解】因为,所以,而焦点在轴上,所以椭圆方程为故选:B6、C【解析】由抛物线的定义可知点到直线和的距离之和的最小值即为焦点到直线的距离.【详解】解:由题意,抛物线的焦点为,准线为,所以根据抛物线的定义可得点到直线的距离等于,所以点到直线和的距离之和的最小值即为焦点到直线的距离,故选:C.7、D【解析】先画出可行域,由,得,作出直线,向上平移过点A时,取得最大值,求出点A的坐标,代入可求得结果【详解】不等式组表示的可行域,如图所示由,得,作出直线,向上平移过点A时,取得最大值,由,得,即,所以的最大值为,故选:D8、D【解析】设,,根据和求出a的值,由,两点之间直线最短,可得的最小值为,根据坐标求出即可.【详解】设,,所以,由,所以,因为且,所以,整理可得,又动点M的轨迹是,所以,解得,所以,又,所以,因为,所以的最小值,当M在位置或时等号成立.故选:D9、D【解析】解:,设F1F2=2c,∵△F2AB是等边三角形,∴∠AF1F2==30°,∴AF1=c,AF2=c,∴a=(c-c)2,e=2c(c-c)=+1,故选D10、B【解析】根据等差数列的性质,以及等差数列的前项和公式,由题中条件,即可得出结果.【详解】因为数列为等差数列,由,可得,,则.故选:B.【点睛】本题主要考查等差数列的性质,以及等差数列前项和的基本量运算,属于基础题型.11、B【解析】先由两直线垂直求出的值,再由充分条件与必要条件的概念,即可得出结果.【详解】因为直线与直线垂直,则,即,解得或;因此由“”能推出“直线与直线垂直”,反之不能推出,所以“”是“直线与直线垂直”的充分非必要条件.故选B【点睛】本题主要考查命题充分不必要条件的判定,熟记充分条件与必要条件的概念,以及两直线垂直的判定条件即可,属于常考题型.12、D【解析】根据导函数的图象判断出函数的单调区间、极值、最值,由此确定正确选项.【详解】根据图象知:当,时,函数单调递减;当,时,函数单调递增.所以在上单调递减,在上单调递增,在上单调递减,在上单调递增,故选项A不正确,选项D正确;故当时,取得极小值,选项C不正确;当时,不是取得最小值,选项B不正确;故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题设知:圆锥的轴截面为等边三角形,进而求圆锥的底面周长,由扇形面积公式求圆锥的侧面积大小.【详解】由题设,圆锥的轴截面为等边三角形,又圆锥的母线长为2,∴底面半径为1,则底面周长为,∴圆锥的侧面积大小为.故答案为:.14、【解析】先求出直线经过的定点,再求出圆心到定点的距离,数形结合即得解.【详解】由题得,所以直线经过定点,圆的圆心为,半径为.圆心到定点的距离为,当时,取得最小值,且最小值为.故答案为:815、【解析】先求出函数的导函数,然后结合导数的几何意义求解即可.【详解】解:由,得,则,即当时,,所以切线方程为:,故答案为:.【点睛】本题考查了曲线在某点处的切线方程的求法,属基础题.16、##0.25【解析】求出点A,B坐标,设出直线l的方程,联立直线l与椭圆方程,借助韦达定理即可计算作答.【详解】依题意,点,直线AB斜率为,因直线l直线AB,则设直线l方程为:,,由消去y并整理得:,,解得,于是有或,设,则,有,因此,,所以的值为.故答案:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、或【解析】先分别求出,为真时,的范围;再求交集,即可得出结果.【详解】若是真命题.则对任意恒成立,∴;若为真命题,则方程有实根,∴,解得或,由题意,真也真,∴或即实数的取值范围是或.18、(1)(2)【解析】(1)依题意可得,即可求出、,即可求出椭圆方程;(2)首先求出直线斜率不存在时弦显然可得直线的斜率存在,设直线方程为、、,联立直线与椭圆方程,消元列出韦达定理,再根据弦长公式得到方程,求出,即可得解;【小问1详解】解:依题意,解得,所以椭圆方程为;【小问2详解】解:当直线的斜率不存在时,直线的方程为,此时,不符合题意;所以直线的斜率存在,设直线方程为,则,消元整理得,设,,则,,所以,即,解得,所以直线的方程为;19、(1)(2)【解析】(1)设点,求出直线、直线的斜率相乘可得,结合可得答案;(2)设直线l的方程为与椭圆方程联立,代入得,设,再利用基本不等式可得答案.【小问1详解】由题意可得,,即,则,设点,∵Q为的中点,∴,∴直线斜率,直线的斜率,∴,又∵,∴,则,解得,∴椭圆C的方程为.【小问2详解】由(1)知,设直线l的方程为,联立化简得,,设,则,易知M,N到y轴的距离之和为,,设,∴,当且仅当即时等号成立,所以当时取得最大值,此时直线l的方程为.20、(1)散点图见解析;(2),能够脱贫.【解析】(1)直接画出点即可;(2)利用公式求出与,即可求出,把代入即可估计出A贫困户在2021年能否脱贫.【小问1详解】画出y关于x的散点图,如图所示:【小问2详解】根据表中数据,计算,,又因为,,所以,,关于的线性回归方程,当时,(百元),估计年A贫困户人均年纯收入达到元,能够脱贫.21、(1)(2)(3)答案见解析【解析】(1)联立方程组求得交点的坐标,结合直线与直线垂直,求得直线的斜率为,利用直线的点斜式,即可求解;(2)先求得点到直线的距离为,由圆的的垂径定理列出方程求得圆的半径,即可求解;(3)若选①:设直线l的的斜率为,得到,结合题意列出方程,求得的值,即可求解;若选②,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《护理康复评定上》课件
- 2021届天津市杨村一中、宝坻一中等四校高一下学期期末联考化学试题
- 《综合医院评审概述》课件
- 小学四年级数学小数加减法计算题练习卷
- 《汽车车型解析》课件
- 电焊管道焊接技术
- 美食烹饪行业调味技巧培训实践
- 物流行业仓储管理心得总结
- 电影院服务员的服务技巧
- 印刷行业采购工作心得
- 中建医疗工程交付指南
- 译林版小学英语二年级上全册教案
- DL∕T 821-2017 金属熔化焊对接接头射线检测技术和质量分级
- DL∕ T 1195-2012 火电厂高压变频器运行与维护规范
- 小学五年级英语语法练习
- NB-T32004-2018光伏并网逆变器技术规范
- 领导与班子廉洁谈话记录(4篇)
- 衡阳市耒阳市2022-2023学年七年级上学期期末语文试题【带答案】
- 文库发布:strata手册
- 2024-2030年中国大棚蔬菜种植行业市场发展监测及投资前景展望报告
- 旋挖钻孔灌注桩施工技术规程
评论
0/150
提交评论