版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省高邮市2025届数学高一上期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一半径为2m的水轮,水轮圆心O距离水面1m;已知水轮按逆时针做匀速转动,每3秒转一圈,且当水轮上点P从水中浮现时(图中点)开始计算时间.如图所示,建立直角坐标系,将点P距离水面的高度h(单位:m)表示为时间t(单位:s)的函数,记,则()A.0 B.1C.3 D.42.下列各式中成立的是A. B.C. D.3.计算A.-2 B.-1C.0 D.14.已知直线的斜率为1,则直线的倾斜角为A. B.C. D.5.下列函数中,以为最小正周期且在区间上单调递减的是()A. B.C. D.6.已知,,,则A. B.C. D.7.17世纪,在研究天文学的过程中,为了简化大数运算,苏格兰数学家纳皮尔发明了对数,对数的思想方法即把乘方和乘法运算分别转化为乘法和加法,数学家拉普拉斯称赞为“对数的发明在实效上等于把天文学家的寿命延长了许多倍”.已知,,设,则所在的区间为()A. B.C. D.8.已知偶函数的定义域为且,,则函数的零点个数为()A. B.C. D.9.已知函数,若函数有三个零点,则实数的取值范围是()A. B.C. D.10.已知函数,则()A. B.3C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知定义在上的偶函数在上递减,且,则不等式的解集为__________12.一个扇形的中心角为3弧度,其周长为10,则该扇形的面积为__________13.已知向量不共线,,若,则___14.已知球O的内接圆柱的轴截面是边长为2的正方形,则球O的表面积为________.15.函数的定义域是________.16.梅州城区某公园有一座摩天轮,其旋转半径30米,最高点距离地面70米,匀速运行一周大约18分钟.某人在最低点的位置坐上摩天轮,则第12分钟时,他距地面大约为___________米.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)判断函数的奇偶性,并进行证明;(2)若实数满足,求实数的取值范围.18.已知函数且点(4,2)在函数f(x)的图象上.(1)求函数f(x)的解析式,并在图中的直角坐标系中画出函数f(x)的图象;(2)求不等式f(x)<1的解集;(3)若方程f(x)-2m=0有两个不相等的实数根,求实数m的取值范围19.已知集合,(1)求集合,;(2)若关于的不等式的解集为,求的值20.已知,,求以及的值21.已知二次函数.(1)若在的最大值为5,求的值;(2)当时,若对任意实数,总存在,使得.求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据题意设h=f(t)=Asin(ωt+φ)+k,求出φ、A、T和k、ω的值,写出函数解析式,计算f(t)+f(t+1)+f(t+2)的值【详解】根据题意,设h=f(t)=Asin(ωt+φ)+k,(φ<0),则A=2,k=1,因为T=3,所以ω,所以h=2sin(t+φ)+1,又因为t=0时,h=0,所以0=2sinφ+1,所以sinφ,又因为φ<0,所以φ,所以h=f(t)=2sin(t)+1;所以f(t)sint﹣cost+1,f(t+1)=2sin(t)+1=2cost+1,f(t+2)=2sin(t)+1sint﹣cost+1,所以f(t)+f(t+1)+f(t+2)=3故选:C2、D【解析】根据指数运算法则分别验证各个选项即可得到结果.【详解】中,中,,中,;且等式不满足指数运算法则,错误;中,,错误;中,,则,错误;中,,正确.故选:【点睛】本题考查指数运算法则的应用,属于基础题.3、C【解析】.故选C.4、A【解析】设直线的倾斜角为,则由直线的斜率,则故故选5、B【解析】根据正弦、余弦、正切函数的周期性和单调性逐一判断即可得出答案.【详解】解:对于A,函数的最小正周期为,不符合题意;对于B,函数的最小正周期为,且在区间上单调递减,符合题意;对于C,函数的最小正周期为,且在区间上单调递增,不符合题意;对于D,函数的最小正周期为,不符合题意.故选:B.6、D【解析】容易看出,,从而可得出a,b,c的大小关系.【详解】,,;.故选D.【点睛】考查指数函数和对数函数的单调性,以及增函数和减函数的定义,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.7、C【解析】利用对数的运算性质求出,由此可得答案.【详解】,所以.故选:C8、D【解析】令得,作出和在上的函数图象如图所示,由图像可知和在上有个交点,∴在上有个零点,∵,均是偶函数,∴在定义域上共有个零点,故选点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等9、A【解析】函数有三个零点,转化为函数的图象与直线有三个不同的交点,画出的图象,结合图象求解即可【详解】因为函数有三个零点,所以函数的图象与直线有三个不同的交点,函数的图象如图所示,由图可知,,故选:A10、D【解析】根据分段函数的解析式,令代入先求出,进而可求出的结果.【详解】解:,则令,得,所以.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为,而为偶函数,故,故原不等式等价于,也就是,所以即,填点睛:对于偶函数,有.解题时注意利用这个性质把未知区间的性质问题转化为已知区间上的性质问题去处理12、6【解析】利用弧长公式以及扇形周长公式即可解出弧长和半径,再利用扇形面积公式即可求解.【详解】设扇形的半径为,弧长为,则,解得,所以,答案为6.【点睛】主要考查弧长公式、扇形的周长公式以及面积公式,属于基础题.13、【解析】由,将表示为的数乘,求出参数【详解】因为向量不共线,,且,所以,即,解得【点睛】向量与共线,当且仅当有唯一一个实数,使得14、【解析】根据内接圆柱的轴截面是边长为2的正方形,确定球O的半径,再由球的表面积公式即得。【详解】由题得,圆柱底面直径为2,球的半径为R,球O的内接圆柱的轴截面是边长为2的正方形,则圆柱的轴截面的对角线即为球的直径,故,则球的表面积.故答案为:【点睛】本题考查空间几何体,球的表面积,是常见的考题。15、【解析】利用已知条件可得出关于的不等式组,由此可解得函数的定义域.【详解】对于函数,有,解得.因此,函数的定义域为.故答案:.16、55【解析】建立平面直角坐标系,第分钟时所在位置的高度为,设出其三角函数的表达式,由题意,得出其周期,求出解析式,然后将代入,可得答案.【详解】如图设为地面,圆为摩天轮,其旋转半径30米,最高点距离地面70米.则摩天轮的最低点离地面10米,即以所在直线为轴,所在直线为轴,建立平面直角坐标系.某人在最低点的位置坐上摩天轮,则第分钟时所在位置的高度为则由题意,,则,所以当时,故答案为:55三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)为奇函数,证明见解析(2)【解析】(1)由奇偶性定义直接判断即可;(2)化简函数得到,由此可知在上单调递增;利用奇偶性可化简所求不等式为,利用单调性解不等式即可.【小问1详解】为奇函数,证明如下:定义域,,为定义在上的奇函数.【小问2详解】,又在上单调递增,在上单调递增;由(1)知:,,,,即,,解得:,即实数的取值范围为.18、(1)见解析;(2);(3).【解析】(1)根据点在函数的图象上得到,于是可得解析式,进而可画出函数的图象;(2)将不等式化成不等式组求解可得所求;(3)结合图象得到的取值范围后再求出的范围【详解】(1)∵点在函数图象上,∴,∴∴.画出函数的图象如下图所示(2)不等式等价于或解得,或,所以原不等式的解集为(3)∵方程f(x)-2m=0有两个不相等的实数根,∴函数的图象与函数的图象有两个不同的交点结合图象可得,解得∴实数的取值范围为【点睛】(1)本题考查函数图象的画法和图象的应用,根据解析式画图象时要根据描点法进行求解,画图时要熟练运用常见函数的图象(2)根据方程根的个数(函数零点的个数)求参数的取值时,要注意将问题进行转化两函数图象交点个数的问题,然后画出函数的图象后利用数形结合求解19、(1),(2)【解析】(1)根据集合的并集、补集概念即可求解;(2)根据交集的概念和一元二次不等式的解法即可得解.【小问1详解】因为,所以因为,所以,【小问2详解】因为所以的解集为所以解为所以解得,20、【解析】根据同角三角函数,求出,;再利用两角和差公式求解.【详解】,,【点睛】本题考查同角三角函数和两角和差公式,解决此类问题要注意在求解同角三角函数值时,角所处的范围会影响到函数值的正负.21、(1)2;(2).【解析】(1)时,;当时,根据单调性可得答案;(2)依题意得,当、时,利用的单调性可得答案;当和时,结合图象和单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自费出国留学咨询服务合同
- 自媒体账号合作的协议书范本
- 2024年度汽车租赁服务及购买合同2篇
- 二零二四年轨道交通设备采购合同3篇
- 房屋认购合同模板3篇
- 有关蔬菜购销合同
- 银校合作协议书
- 简易版商品房租赁合同
- 铝灰处理2024年度劳务合同
- 项目终止合作协议书范本
- 医药代表培训完整教程
- 《可持续发展新理念》课件
- 玻璃生产车间改造方案
- 2024年国家公务员考试《申论》真题(副省级)及答案解析
- 2024年大学生求职面试技巧培训课件
- 无人机入门培训
- 2024-2030年中国通信基站锂电池市场营销现状及投资前景预测研究报告
- 瑜伽馆会员管理与服务质量提升手册
- DB15T 435-2020 公路风吹雪雪害防治技术规程
- 物联网设备安装与维护手册
- 2024年酒店托管协议书酒店委托管理协议
评论
0/150
提交评论