上海市嘉定一中2025届数学高二上期末质量检测试题含解析_第1页
上海市嘉定一中2025届数学高二上期末质量检测试题含解析_第2页
上海市嘉定一中2025届数学高二上期末质量检测试题含解析_第3页
上海市嘉定一中2025届数学高二上期末质量检测试题含解析_第4页
上海市嘉定一中2025届数学高二上期末质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市嘉定一中2025届数学高二上期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,表示两条不同的直线,表示平面.下列说法正确的是A.若,,则B.若,,则C.若,,则D.若,,则2.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2 B.3C.6 D.93.双曲线的焦距是()A.4 B.C.8 D.4.已知在一次降雨过程中,某地降雨量(单位:mm)与时间t(单位:min)的函数关系可表示为,则在时的瞬时降雨强度为()mm/min.A. B.C.20 D.4005.已知、为非零实数,若且,则下列不等式成立的是()A. B.C. D.6.“”是“直线与互相垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知随机变量服从正态分布,若,则()A.0.2 B.0.24C.0.28 D.0.328.在等比数列中,,,则()A.2 B.4C.6 D.89.已知不等式的解集为,关于x的不等式的解集为B,且,则实数a的取值范围为()A. B.C. D.10.中国历法推测遵循以测为辅,以算为主的原则.例如《周髀算经》里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.二十四节气中,从冬至到夏至的十三个节气依次为:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种、夏至.已知《周髀算经》中记录某年的冬至的晷影长为13尺,夏至的晷影长是1.48尺,按照上述规律,那么《周髀算经》中所记录的立夏的晷影长应为()A.尺 B.尺C.尺 D.尺11.空间直角坐标系中、、)、,其中,,,,已知平面平面,则平面与平面间的距离为()A. B.C. D.12.“椭圆的离心率为”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知函数若存在,使得成立,则实数的取值范围是_______________14.如图,椭圆的左、右焦点分别为,过椭圆上的点作轴的垂线,垂足为,若四边形为菱形,则该椭圆的离心率为_________.15.如图,在四棱锥中,平面,底面为矩形,分别为的中点,连接,则点到平面的距离为__________.16.已知,为椭圆C的焦点,点P在椭圆C上,,则的面积为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列中,,且满足(1)求证数列是等差数列,并求数列的通项公式;(2)求数列的前n项和18.(12分)在△中,已知、、分别是三内角、、所对应的边长,且(Ⅰ)求角的大小;(Ⅱ)若,且△的面积为,求.19.(12分)如图,已知正四棱锥中,O为底面对角线的交点.(1)求证:平面;(2)求证:平面.20.(12分)如图,菱形的边长为4,,矩形的面积为8,且平面平面(1)证明:;(2)求C到平面的距离.21.(12分)如图,在四面体ABCD中,,平面ABC,点M为棱AB的中点,,(1)证明:;(2)求平面BCD和平面DCM夹角的余弦值22.(10分)已知椭圆的左、右顶点坐标分别是,,短轴长等于焦距.(1)求椭圆的方程;(2)若直线与椭圆相交于两点,线段的中点为,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断【详解】A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,,由线面垂直的性质定理可知,故B正确;C.若m⊥α,m⊥n,则n∥α或n⊂α,故C错;D.若m∥α,m⊥n,则n∥α或n⊂α或n⊥α,故D错故选B【点睛】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟定理是解题的关键,注意观察空间的直线与平面的模型2、C【解析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F,由抛物线的定义知,即,解得.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.3、C【解析】根据,先求半焦距,再求焦距即可.【详解】解:由题意可得,,∴,故选:C【点睛】考查求双曲线的焦距,基础题.4、B【解析】对题设函数求导,再求时对应的导数值,即可得答案.【详解】由题设,,则,所以在时的瞬时降雨强度为mm/min.故选:B5、D【解析】作差法即可逐项判断.【详解】或,对于A:,∵,无法判断正负,故A错误;对于B:,∵无法判断正负,故B错误;对于C:,∵,,∴,,故C错误;对于D:,∴,故D正确.故选:D.6、A【解析】根据两直线垂直的性质求出,再结合充分条件和必要条件的定义即可得出答案.【详解】解:因为直线与互相垂直,所以,解得或,所以“”是“直线与互相垂直”的充分不必要条件.故选:A.7、C【解析】依据正态曲线的对称性即可求得【详解】由随机变量服从正态分布,可知正态曲线的对称轴为直线由,可得则,故故选:C8、D【解析】由等比中项转化得,可得,求解基本量,由等比数列通项公式即得解【详解】设公比为,则由,得,即故,解得故选:D9、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分离参数求解即可.【详解】由得,,解得,因为,所以所以可得在上恒成立,即在上恒成立,故只需,,当时,,故故选:B10、B【解析】根据等差数列定义求得公差,再求解立夏的晷影长在数列中所对应的项即可【详解】设从冬至到夏至的十三个节气依次为等差数列的前13项,则所以公差为,则立夏的晷影长应为(尺)故选:B11、A【解析】由已知得,,,设向量与向量、都垂直,由向量垂直的坐标运算可求得,再由平面平行和距离公式计算可得选项.【详解】解:由已知得,,,设向量与向量、都垂直,则,即,取,,又平面平面,则平面与平面间的距离为,故选:A.12、C【解析】讨论椭圆焦点的位置,根据离心率分别求出参数m,由充分必要性的定义判断条件间的充分、必要关系.【详解】当椭圆的焦点在轴上时,,得;当椭圆的焦点在轴上时,,得故“椭圆的离心率为”是“”的必要不充分条件故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分离参数法得到能成立,构造函数,求出的最小值,即可求出实数a的取值范围.【详解】由得.设,则存在,使得成立,即能成立,所以能成立,所以.又令,由对勾函数的性质可得:在上,t(x)单调递增,所以当x=2时,t有最小值,所以实数a的取值范围是.故答案为:【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值);(3)利用导数求参数的取值范围.14、【解析】根据题意可得,利用推出,进而得出结果.【详解】由题意知,,将代入方程中,得,因为,所以,整理,得,又,所以,由,解得.故答案为:15、【解析】利用转化法,根据线面平行的性质,结合三棱锥的体积等积性进行求解即可.【详解】设是的中点,连接,因为是的中点,所以,因为平面,平面,所以平面,因此点到平面的距离等于点到平面的距离,设为,因为平面,所以,,于是有,底面为矩形,所以有,,因为平面,所以,于是有:,由余弦定理可知:cos∠PEC=所以,因此,,因为,所以,故答案为:16、##【解析】设,然后根据椭圆的定义和余弦定理列方程组可求出,再由三角形的面积公式可求得结果【详解】由,得,则,设,则,在中,,由余弦定理得,,所以,所以,所以,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;;(2).【解析】(1)根据等差数列的定义证明为常数即可;(2)利用错位相减法即可求和.【小问1详解】由得,,∴数列是以1为首项,1为公差的等差数列,∴,∴;【小问2详解】①,②,①-②得:,.18、(Ⅰ);(Ⅱ).【解析】(Ⅰ)利用余弦定理和得到关于角A的关系式,求解A(II)再结合正弦面积公式得到三角形的边长的求解【详解】解:(Ⅰ)在△ABC中,(Ⅱ)由,得19、(1)证明见解析;(2)证明见解析.【解析】(1)根据给定条件,利用线面平行的判定推理作答.(2)利用正四棱锥的结构特征,结合线面垂直的判定推理作答.小问1详解】在正四棱锥中,由正方形得:,而平面,平面,所以平面.【小问2详解】在正四棱锥中,O为底面对角线的交点,则O是AC,BD的中点,而,,则,,因,平面,所以平面.20、(1)证明见解析.(2)【解析】(1)利用线面垂直的性质证明出;(2)利用等体积转换法,先求出O到平面AEF的距离,再求C到平面的距离.【小问1详解】在矩形中,.因为平面平面,平面平面,所以平面,所以.【小问2详解】设AC与BD的交点为O,则C到平面AEF的距离为O到平面AEF的距离的2倍.因为菱形ABCD的边长为4且,所以.因为矩形BDFE的面积为8,所以BE=2.,,则三棱锥的体积.在△AEF中,,所以.记O到平面AEF的距离为d.由得:,解得:,所以C到平面AEF的距离为.21、(1)证明见解析(2)【解析】(1)根据题意,利用线面垂直的判定定理证明平面ABD即可;(2)以A为原点,分别以,,方向为x轴,y轴,z轴的正方向的空间直角坐标系,分别求得平面BCD的一个法向量和平面DCM的一个法向量,然后由求解【小问1详解】证明:∵平面ABC,∴,又,,∴平面ABD,∴【小问2详解】如图,以A为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系,则,,,,,依题意,可得,设为平面BCD的一个法向量,则,不妨令,可得设为平面DCM的一个法向量,则,不妨令,可得,所以所以平面BCD和平面DCM的夹角的余弦值为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论