辽宁省抚顺市六校联合体2025届高二上数学期末学业水平测试试题含解析_第1页
辽宁省抚顺市六校联合体2025届高二上数学期末学业水平测试试题含解析_第2页
辽宁省抚顺市六校联合体2025届高二上数学期末学业水平测试试题含解析_第3页
辽宁省抚顺市六校联合体2025届高二上数学期末学业水平测试试题含解析_第4页
辽宁省抚顺市六校联合体2025届高二上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省抚顺市六校联合体2025届高二上数学期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆:的左、右焦点分别为,,下顶点为,直线与椭圆的另一个交点为,若为等腰三角形,则椭圆的离心率为()A. B.C. D.2.点M在圆上,点N在直线上,则|MN|的最小值是()A. B.C. D.13.数列,,,,…,的通项公式可能是()A. B.C. D.4.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2 B.3C.6 D.95.已知双曲线=1的一条渐近线方程为x-4y=0,其虚轴长为()A.16 B.8C.2 D.16.已知命题,,若是一个充分不必要条件,则的取值范围是()A. B.C. D.7.已知正方形的四个顶点都在椭圆上,若的焦点F在正方形的外面,则的离心率的取值范围是()A. B.C. D.8.已知是两条不同的直线,是两个不同的平面,且,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件9.在中,角,,所对的边分别为,,,若,则的形状为()A.锐角三角形 B.直角三角形C.钝角三角形 D.不确定10.设等差数列的前n项和为.若,则()A.19 B.21C.23 D.3811.如图,在空间四边形中,()A. B.C. D.12.七巧板是中国古代劳动人民发明的一种传统智力玩具,被誉为“东方魔板”,它是由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中随机地取一点,则该点恰好取自白色部分的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.点到抛物线上的点的距离的最小值为________.14.已知正四面体ABCD中,E,F分别是线段BC,AD的中点,点G是线段CD上靠近D的四等分点,则直线EF与AG所成角的余弦值为______15.已知空间向量,,若,则______16.设P为圆上一动点,Q为直线上一动点,O为坐标原点,则的最小值为___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)动点M到点的距离比它到直线的距离小,记M的轨迹为曲线C.(1)求C的方程;(2)已知圆,设P,A,B是C上不同的三点,若直线PA,PB均与圆D相切,若P的纵坐标为,求直线AB的方程.18.(12分)在二项式展开式中,第3项和第4项的二项式系数比为.(1)求n的值及展开式中的常数项;(2)求展开式中系数最大的项是第几项.19.(12分)设数列的前n项和为,且,数列(1)求和的通项公式;(2)设数列的前n项和为,证明:20.(12分)如图,已知四边形中,,,,且,求四边形的面积21.(12分)如图①,等腰梯形中,,分别为的中点,,现将四边形沿折起,使平面平面,得到如图②所示的多面体,在图②中:(1)证明:平面平面;(2)求四棱锥的体积.22.(10分)已知圆M:的圆心为M,圆N:的圆心为N,一动圆与圆N内切,与圆M外切,动圆的圆心E的轨迹为曲线C(1)求曲线C的方程;(2)已知点,直线l与曲线C交于A,B两点,且,直线l是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由椭圆定义可得各边长,利用三角形相似,可得点坐标,再根据点在椭圆上,可得离心率.【详解】如图所示:因为为等腰三角形,且,又,所以,所以,过点作轴,垂足为,则,由,,得,因为点在椭圆上,所以,所以,即离心率,故选:B.2、C【解析】根据题意可知圆心,又由于线外一点到已知直线的垂线段最短,结合点到直线的距离公式,即可求出结果.【详解】由题意可知,圆心,半径为,所以圆心到的距离为,所以的最小值为.故选:C.3、D【解析】利用数列前几项排除A、B、C,即可得解;【详解】解:由,排除A,C,由,排除B,分母为奇数列,分子为,故数列的通项公式可以为,故选:D4、C【解析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F,由抛物线的定义知,即,解得.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.5、C【解析】根据双曲线的渐近线方程的特点,结合虚轴长的定义进行求解即可.【详解】因为双曲线=1的一条渐近线方程为x-4y=0,所以,因此该双曲线的虚轴长为,故选:C6、A【解析】先化简命题p,q,再根据是的一个充分不必要条件,由q求解.【详解】因为命题,或,又是的一个充分不必要条件,所以,解得,所以的取值范围是,故选:A7、C【解析】如图由题可得,进而可得,即求.【详解】如图根据对称性,点D在直线y=x上,可设,则,∴,可得,,即,又解得.故选:C.8、B【解析】根据垂直关系的性质可判断.【详解】由题,,则或,若,则或或与相交,故充分性不成立;若,则必有,故必要性成立,所以“”是“”的必要不充分条件.故选:B.9、C【解析】由正弦定理得出,再由余弦定理得出,从而判断为钝角得出的形状.【详解】因为,所以,所以,所以的形状为钝角三角形.故选:C10、A【解析】由已知及等差数列的通项公式得到公差d,再利用前n项和公式计算即可.【详解】设等差数列的公差为d,由已知,得,解得,所以.故选:A11、A【解析】利用空间向量加减法法则直接运算即可.【详解】根据向量的加法、减法法则得.故选:A.12、A【解析】设七巧板正方形边长为4,求出阴影部分的面积,再利用几何概型概率公式计算作答.【详解】设七巧板正方形边长为4,则大阴影等腰三角形底边长为4,底边上的高为2,可得小正方形对角线长为2,小正方形边长为,小阴影等腰直角三角形腰长为,小白色等腰直角三角形底边长为2,则左上角阴影等腰直角三角形腰长为2,因此,图中阴影部分面积,而七巧板正方形面积,于是得七巧板中白色部分面积为,所以在此正方形中随机地取一点,则该点恰好取自白色部分的概率为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设出抛物线上点的坐标,利用两点间距离公式,配方求出最小值.【详解】设抛物线上的点坐标,则,当时,取得最小值,且最小值为.故答案为:14、【解析】建立空间直角坐标系,令正四面体的棱长为,即可求出点的坐标,从而求出异面直线所成角的余弦值;【详解】解:如图建立空间直角坐标系,令正四面体的棱长为,则,所以,所以,所以,,,,,设,因为,所以,所以,所以,,设直线与所成角为,则故答案为:15、7【解析】根据题意,结合空间向量的坐标运算,即可求解.【详解】根据题意,易知,因为,所以,即,解得故答案为:716、4【解析】取点,可得,从而,,从而可求解【详解】解:由圆,得圆心,半径,取点A(3,0),则,又,∴,∴,∴,当且仅当直线时取等号故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由抛物线的定义可得结论;(2)设,得PA的两点式方程为,由在抛物线上,化简直线方程为,然后由圆心到切线的距离等于半径得出的关系式,并利用得出点满足的等式,同理设得方程,最后由直线方程的定义可得直线方程【小问1详解】由题意得动点M到点的距离等于到直线的距离,所以曲线C是以为焦点,为准线的抛物线.设,则,于是C的方程为.【小问2详解】由(1)可知,设,PA的两点式方程为.由,,可得.因为PA与D相切,所以,整理得.因为,可得.设,同理可得于是直线AB的方程为.18、(1),常数项为(2)5【解析】(1)求出二项式的通项公式,求出第3项和第4项的二项式系数,再利用已知条件列方程求出的值,从而可求出常数项,(2)设展开式中系数最大的项是第项,则,从而可求出结果【小问1详解】二项式展开式的通项公式为,因为第3项和第4项的二项式系数比为,所以,化简得,解得,所以,令,得,所以常数项为【小问2详解】设展开式中系数最大的项是第项,则,,解得,因为,所以,所以展开式中系数最大的项是第5项19、(1),(2)证明见解析【解析】(1)根据可得,从而可得;(2)利用错位相减法可得,从而可得,又,即可证明不等式成立.【小问1详解】解:∵,∴当时,,当时,,∴,经检验,也符合,∴,;【小问2详解】证明:因为,∴,∴∴,又∵,∴,所以20、.【解析】在中由余弦定理可得,在中,由余弦定理可得,再利用四边形的面积,结合三角形面积公式可得答案.【详解】在中,由,,,可得在中,由,,,可得又,故.所以四边形的面积=【点睛】本题主要考查余弦定理解三角形,考查了三角形面积公式的应用,属于中档题.21、(1)证明见解析.(2)2【解析】(1)根据面面平行的判定定理结合已知条件即可证明;(2)将所求四棱锥的体积转化为求即可.【小问1详解】证明:因为,面,面,所以面,同理面,又因为面,所以面面.【小问2详解】解:因为在图①等腰梯形中,分别为的中点,所以,在图②多面体中,因为,面,,所以面.因为,面面,面,面面,所以面,又因为面,所以,在直角三角形中,因为,所以,同理,,所以,则,有,所以.所以四棱锥的体积为2.22、(1),;(2)过,.【解析】(1)根据两圆内切和外切的性质,结合双曲线的定义进行求解即可;(2)设出直线l的方程与双曲线的方程联立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论