江西省高安市重点名校2024年中考数学全真模拟试卷含解析_第1页
江西省高安市重点名校2024年中考数学全真模拟试卷含解析_第2页
江西省高安市重点名校2024年中考数学全真模拟试卷含解析_第3页
江西省高安市重点名校2024年中考数学全真模拟试卷含解析_第4页
江西省高安市重点名校2024年中考数学全真模拟试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省高安市重点名校2024年中考数学全真模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,数轴上的四个点A,B,C,D对应的数为整数,且AB=BC=CD=1,若|a|+|b|=2,则原点的位置可能是()A.A或B B.B或C C.C或D D.D或A2.实数在数轴上的点的位置如图所示,则下列不等关系正确的是()A.a+b>0 B.a-b<0 C.<0 D.>3.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A. B. C.4 D.2+4.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84 B.336 C.510 D.13265.若关于x、y的方程组有实数解,则实数k的取值范围是()A.k>4 B.k<4 C.k≤4 D.k≥46.魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A.0.5 B.1 C.3 D.π7.规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程x2+2x﹣8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是(2,0)和(4,0);④若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程.上述结论中正确的有(

)A.①② B.③④ C.②③ D.②④8.计算4+(﹣2)2×5=()A.﹣16B.16C.20D.249.若关于的一元二次方程的一个根是0,则的值是()A.1 B.-1 C.1或-1 D.10.如图,已知,那么下列结论正确的是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为.12.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小明的做法如下:如图①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是_____;(2)∠APB=∠ACB的依据是_____.13.△ABC的顶点都在方格纸的格点上,则sinA=_▲.14.因式分解:a2﹣a=_____.15.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=.16.已知x(x+1)=x+1,则x=________.三、解答题(共8题,共72分)17.(8分)计算:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1.18.(8分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区域的数字之和为4的倍数,则乙获胜.如果指针落在分割线上,则需要重新转动转盘.请问这个游戏对甲、乙双方公平吗?说明理由.19.(8分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?20.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,动点P从点C出发,在BC边上以每秒cm的速度向点B匀速运动,同时动点Q也从点C出发,沿C→A→B以每秒4cm的速度匀速运动,运动时间为t秒,连接PQ,以PQ为直径作⊙O.(1)当时,求△PCQ的面积;(2)设⊙O的面积为s,求s与t的函数关系式;(3)当点Q在AB上运动时,⊙O与Rt△ABC的一边相切,求t的值.21.(8分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=,AD=1,求DB的长.22.(10分)已知C为线段上一点,关于x的两个方程与的解分别为线段的长,当时,求线段的长;若C为线段的三等分点,求m的值.23.(12分)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.类别频数(人数)频率武术类0.25书画类200.20棋牌类15b器乐类合计a1.00(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:①a=_____,b=_____;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_____;③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.24.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】

根据AB=BC=CD=1,|a|+|b|=2,分四种情况进行讨论判断即可.【详解】∵AB=BC=CD=1,∴当点A为原点时,|a|+|b|>2,不合题意;当点B为原点时,|a|+|b|=2,符合题意;当点C为原点时,|a|+|b|=2,符合题意;当点D为原点时,|a|+|b|>2,不合题意;故选:B.【点睛】此题主要考查了数轴以及绝对值,解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值.2、C【解析】

根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案.【详解】解:由数轴,得b<-1,0<a<1.A、a+b<0,故A错误;B、a-b>0,故B错误;C、<0,故C符合题意;D、a2<1<b2,故D错误;故选C.【点睛】本题考查了实数与数轴,利用点在数轴上的位置得出b<-1,0<a<1是解题关键,又利用了有理数的运算.3、B【解析】

根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.【详解】如图:BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×.故选B.4、C【解析】由题意满七进一,可得该图示为七进制数,化为十进制数为:1×73+3×72+2×7+6=510,故选:C.点睛:本题考查记数的方法,注意运用七进制转化为十进制,考查运算能力,属于基础题.5、C【解析】

利用根与系数的关系可以构造一个两根分别是x,y的一元二次方程,方程有实数根,用根的判别式≥0来确定k的取值范围.【详解】解:∵xy=k,x+y=4,∴根据根与系数的关系可以构造一个关于m的新方程,设x,y为方程的实数根.解不等式得故选:C.【点睛】本题考查了一元二次方程的根的判别式的应用和根与系数的关系.解题的关键是了解方程组有实数根的意义.6、C【解析】

连接OC、OD,根据正六边形的性质得到∠COD=60°,得到△COD是等边三角形,得到OC=CD,根据题意计算即可.【详解】连接OC、OD,∵六边形ABCDEF是正六边形,∴∠COD=60°,又OC=OD,∴△COD是等边三角形,∴OC=CD,正六边形的周长:圆的直径=6CD:2CD=3,故选:C.【点睛】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键.7、C【解析】分析:①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设=2,得到•=2=2,得到当=1时,=2,当=-1时,=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y=的图象上,得到mn=4,然后解方程m+5x+n=0即可得到正确的结论;详解:①由-2x-8=0,得:(x-4)(x+2)=0,解得=4,=-2,∵≠2,或≠2,∴方程-2x-8=0不是倍根方程;故①错误;②关于x的方程+ax+2=0是倍根方程,∴设=2,∴•=2=2,∴=±1,当=1时,=2,当=-1时,=-2,∴+=-a=±3,∴a=±3,故②正确;③关于x的方程a-6ax+c=0(a≠0)是倍根方程,∴=2,∵抛物线y=a-6ax+c的对称轴是直线x=3,∴抛物线y=a-6ax+c与x轴的交点的坐标是(2,0)和(4,0),故③正确;④∵点(m,n)在反比例函数y=的图象上,∴mn=4,解m+5x+n=0得=,=,∴=4,∴关于x的方程m+5x+n=0不是倍根方程;故选C.点睛:本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.8、D【解析】分析:根据有理数的乘方、乘法和加法可以解答本题.详解:4+(﹣2)2×5=4+4×5=4+20=24,故选:D.点睛:本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.9、B【解析】

根据一元二次方程的解的定义把x=0代入方程得到关于a的一元二次方程,然后解此方程即可【详解】把x=0代入方程得,解得a=±1.∵原方程是一元二次方程,所以

,所以,故故答案为B【点睛】本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.10、A【解析】

已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB∥CD∥EF,∴.故选A.【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.二、填空题(本大题共6个小题,每小题3分,共18分)11、1或.【解析】

当△CEB′为直角三角形时,有两种情况:

①当点B′落在矩形内部时,如答图1所示.

连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.

②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:

①当点B′落在矩形内部时,如答图1所示.

连结AC,

在Rt△ABC中,AB=1,BC=4,

∴AC==5,

∵∠B沿AE折叠,使点B落在点B′处,

∴∠AB′E=∠B=90°,

当△CEB′为直角三角形时,只能得到∠EB′C=90°,

∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,

∴EB=EB′,AB=AB′=1,

∴CB′=5-1=2,

设BE=x,则EB′=x,CE=4-x,

在Rt△CEB′中,

∵EB′2+CB′2=CE2,

∴x2+22=(4-x)2,解得,

∴BE=;

②当点B′落在AD边上时,如答图2所示.

此时ABEB′为正方形,∴BE=AB=1.

综上所述,BE的长为或1.

故答案为:或1.12、①线段垂直平分线上的点与这条线段两个端点的距离相等;②等量代换同弧所对的圆周角相等【解析】

(1)根据线段的垂直平分线的性质定理以及等量代换即可得出结论.

(2)根据同弧所对的圆周角相等即可得出结论.【详解】(1)如图2中,∵MN垂直平分AB,EF垂直平分BC,∴OA=OB,OB=OC(线段垂直平分线上的点与这条线段两个端点的距离相等),∴OA=OB=OC(等量代换)故答案是:(2)∵,∴∠APB=∠ACB(同弧所对的圆周角相等).故答案是:(1)线段垂直平分线上的点与这条线段两个端点的距离相等和等量代换;(2)同弧所对的圆周角相等.【点睛】考查作图-复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质.13、【解析】

在直角△ABD中利用勾股定理求得AD的长,然后利用正弦的定义求解.【详解】在直角△ABD中,BD=1,AB=2,则AD===,则sinA===.故答案是:.14、a(a﹣1)【解析】

直接提取公因式a,进而分解因式得出答案【详解】a2﹣a=a(a﹣1).故答案为a(a﹣1).【点睛】此题考查公因式,难度不大15、50°.【解析】

解:连接DF,连接AF交CE于G,∵EF为⊙O的切线,∴∠OFE=90°,∵AB为直径,H为CD的中点∴AB⊥CD,即∠BHE=90°,∵∠ACF=65°,∴∠AOF=130°,∴∠E=360°-∠BHE-∠OFE-∠AOF=50°,故答案为:50°.16、1或-1【解析】方程可化为:,∴或,∴或.故答案为1或-1.三、解答题(共8题,共72分)17、-1【解析】分析:根据零次幂、绝对值以及负指数次幂的计算法则求出各式的值,然后进行求和得出答案.详解:解:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1=1﹣3+(﹣1)+2=﹣1.点睛:本题主要考查的是实数的计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.18、见解析【解析】

解:不公平,理由如下:列表得:12321,22,23,231,32,33,341,42,43,4由表可知共有9种等可能的结果,其中数字之和为3的倍数的有3种结果,数字之和为4的倍数的有2种,则甲获胜的概率为、乙获胜的概率为,∵,∴这个游戏对甲、乙双方不公平.【点睛】考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.19、(1);(2)20分钟.【解析】

(1)材料加热时,设y=ax+15(a≠0),由题意得60=5a+15,解得a=9,则材料加热时,y与x的函数关系式为y=9x+15(0≤x≤5).停止加热时,设y=(k≠0),由题意得60=,解得k=300,则停止加热进行操作时y与x的函数关系式为y=(x≥5);(2)把y=15代入y=,得x=20,因此从开始加热到停止操作,共经历了20分钟.答:从开始加热到停止操作,共经历了20分钟.20、(1);(2)①;②;(3)t的值为或1或.【解析】

(1)先根据t的值计算CQ和CP的长,由图形可知△PCQ是直角三角形,根据三角形面积公式可得结论;(2)分两种情况:①当Q在边AC上运动时,②当Q在边AB上运动时;分别根据勾股定理计算PQ2,最后利用圆的面积公式可得S与t的关系式;(3)分别当⊙O与BC相切时、当⊙O与AB相切时,当⊙O与AC相切时三种情况分类讨论即可确定答案.【详解】(1)当t=时,CQ=4t=4×=2,即此时Q与A重合,CP=t=,∵∠ACB=90°,∴S△PCQ=CQ•PC=×2×=;(2)分两种情况:①当Q在边AC上运动时,0<t≤2,如图1,由题意得:CQ=4t,CP=t,由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,∴S=π=;②当Q在边AB上运动时,2<t<4如图2,设⊙O与AB的另一个交点为D,连接PD,∵CP=t,AC+AQ=4t,∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,∵PQ为⊙O的直径,∴∠PDQ=90°,Rt△ACB中,AC=2cm,AB=4cm,∴∠B=30°,Rt△PDB中,PD=PB=,∴BD=,∴QD=BQ﹣BD=6﹣4t﹣=3﹣,∴PQ==,∴S=π==;(3)分三种情况:①当⊙O与AC相切时,如图3,设切点为E,连接OE,过Q作QF⊥AC于F,∴OE⊥AC,∵AQ=4t﹣2,Rt△AFQ中,∠AQF=30°,∴AF=2t﹣1,∴FQ=(2t﹣1),∵FQ∥OE∥PC,OQ=OP,∴EF=CE,∴FQ+PC=2OE=PQ,∴(2t﹣1)+t=,解得:t=或﹣(舍);②当⊙O与BC相切时,如图4,此时PQ⊥BC,∵BQ=6﹣4t,PB=2﹣t,∴cos30°=,∴,∴t=1;③当⊙O与BA相切时,如图5,此时PQ⊥BA,∵BQ=6﹣4t,PB=2﹣t,∴cos30°=,∴,∴t=,综上所述,t的值为或1或.【点睛】本题是圆的综合题,涉及了三角函数、勾股定理、圆的面积、切线的性质等知识,综合性较强,有一定的难度,以点P和Q运动为主线,画出对应的图形是关键,注意数形结合的思想.21、BD=2.【解析】

试题分析:根据∠ACD=∠ABC,∠A是公共角,得出△ACD∽△ABC,再利用相似三角形的性质得出AB的长,从而求出DB的长.试题解析:∵∠ACD=∠ABC,又∵∠A=∠A,∴△ABC∽△ACD,∴,∵AC=,AD=1,∴,∴AB=3,∴BD=AB﹣AD=3﹣1=2.点睛:本题主要考查了相似三角形的判定以及相似三角形的性质,利用相似三角形的性质求出AB的长是解题关键.22、(1);(2)或1.【解析】

(1)把m=2代入两个方程,解方程即可求出AC、BC的长,由C为线段上一点即可得AB的长;(2)分别解两个方程可得,,根据为线段的三等分点分别讨论为线段靠近点的三等分点和为线段靠近点的三等分点两种情况,列关于m的方程即可求出m的值.【详解】(1)当时,有,,由方程,解得,即.由方程,解得,即.因为为线段上一点,所以.(2)解方程,得,即.解方程,得,即.①当为线段靠近点的三等分点时,则,即,解得.②当为线段靠近点的三等分点时,则,即,解得.综上可得,或1.【点睛】本题考查一元一次方程的几何应用,注意讨论C点的位置,避免漏解是解题关键.23、(1)见解析;(2)①a=100,b=0.15;②144°;③140人.【解析】

(1)采用随机调查的方式比较合理,随机调查的关键是调查的随机性,这样才合理;

(2)①用喜欢书画类的频数除以喜欢书画类的频率即可求得a值,用喜欢棋牌类的人数除以总人数即可求得b值.②求得器乐类的频率乘以360°即可.③用总人数乘以喜欢武术类的频率即可求喜欢武术的总人数.【详解】(1)∵调查的人数较多,范围较大,∴应当采用随机抽样调查,∵到六年级每个班随机调查一定数量的同学相对比较全面,∴丙同学的说法最合理.(2)①∵喜欢书画类的有20人,频率为0.20,∴a=20÷0.20=100,b=15÷100=0.15;②∵喜欢器乐类的频率为:1﹣0.25﹣0.20﹣0.15=0.4,∴喜欢

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论