版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省赣州市信丰县重点达标名校2024届中考考前最后一卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.已知,代数式的值为()A.-11 B.-1 C.1 D.112.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美 B.宜晶游 C.爱我宜昌 D.美我宜昌3.已知实数a、b满足,则A. B. C. D.4.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5.如图,已知△ABC中,∠A=75°,则∠1+∠2=()A.335°° B.255° C.155° D.150°6.如图,菱形ABCD中,∠B=60°,AB=4,以AD为直径的⊙O交CD于点E,则的长为()A. B. C. D.7.若,则括号内的数是A. B. C.2 D.88.某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛.其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的(
).A.众数 B.中位数 C.平均数 D.方差9.方程2x+3=1A.x=3 B.x=4 C.x=5 D.x=﹣510.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D.5二、填空题(本大题共6个小题,每小题3分,共18分)11.已知是锐角,那么cos=_________.12.如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第三个正方形,…,则第2018个正方形的面积为_____.13.如图,随机闭合开关,,中的两个,能让两盏灯泡和同时发光的概率为___________.14.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=________cm.15.将一个底面半径为2,高为4的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图形面积为_____.16.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为______.三、解答题(共8题,共72分)17.(8分)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.18.(8分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上且AB=12cm(1)若OB=6cm.①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;(2)点C与点O的距离的最大值是多少cm.19.(8分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;20.(8分)如图1,正方形ABCD的边长为8,动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,当点E运动到终点C时,点F也停止运动,连接AE交对角线BD于点N,连接EF交BC于点M,连接AM.(参考数据:sin15°=,cos15°=,tan15°=2﹣)(1)在点E、F运动过程中,判断EF与BD的位置关系,并说明理由;(2)在点E、F运动过程中,①判断AE与AM的数量关系,并说明理由;②△AEM能为等边三角形吗?若能,求出DE的长度;若不能,请说明理由;(3)如图2,连接NF,在点E、F运动过程中,△ANF的面积是否变化,若不变,求出它的面积;若变化,请说明理由.21.(8分)在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F.(I)如图①,若∠F=50°,求∠BGF的大小;(II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.22.(10分)已知:如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B两点(A在B左),y轴交于点C(0,-3).(1)求抛物线的解析式;(2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以B、C、E、P为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.23.(12分)如图,矩形中,对角线,相交于点,且,.动点,分别从点,同时出发,运动速度均为lcm/s.点沿运动,到点停止.点沿运动,点到点停留4后继续运动,到点停止.连接,,,设的面积为(这里规定:线段是面积为0的三角形),点的运动时间为.(1)求线段的长(用含的代数式表示);(2)求时,求与之间的函数解析式,并写出的取值范围;(3)当时,直接写出的取值范围.24.在“双十二”期间,两个超市开展促销活动,活动方式如下:超市:购物金额打9折后,若超过2000元再优惠300元;超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:(1)若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
根据整式的运算法则,先利用已知求出a的值,再将a的值带入所要求解的代数式中即可得到此题答案.【详解】解:由题意可知:,原式故选:D.【点睛】此题考查整式的混合运算,解题的关键在于利用整式的运算法则进行化简求得代数式的值2、C【解析】试题分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因为x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C.考点:因式分解.3、C【解析】
根据不等式的性质进行判断.【详解】解:A、,但不一定成立,例如:,故本选项错误;
B、,但不一定成立,例如:,,故本选项错误;
C、时,成立,故本选项正确;
D、时,成立,则不一定成立,故本选项错误;
故选C.【点睛】考查了不等式的性质要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以或除以同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.4、D【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,不是中心对称图形,故此选项不合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、B【解析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故选B.点睛:本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n﹣2)×180°(n≥3且n为整数)是解题的关键.6、B【解析】
连接OE,由菱形的性质得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性质和三角形内角和定理求出∠DOE=60°,再由弧长公式即可得出答案.【详解】解:连接OE,如图所示:∵四边形ABCD是菱形,∴∠D=∠B=60°,AD=AB=4,∴OA=OD=2,∵OD=OE,∴∠OED=∠D=60°,∴∠DOE=180°﹣2×60°=60°,∴的长==;故选B.【点睛】本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出∠DOE的度数是解决问题的关键.7、C【解析】
根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.【详解】解:,
故选:C.【点睛】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.8、B【解析】分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B.点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数9、C【解析】方程两边同乘(x-1)(x+3),得x+3-2(x-1)=0,解得:x=5,检验:当x=5时,(x-1)(x+3)≠0,所以x=5是原方程的解,故选C.10、B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等边三角形.∴△ABC的周长=3AB=1.故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】
根据已知条件设出直角三角形一直角边与斜边的长,再根据勾股定理求出另一直角边的长,由三角函数的定义直接解答即可.【详解】由sinα==知,如果设a=x,则c=2x,结合a2+b2=c2得b=x.∴cos==.故答案为.【点睛】本题考查的知识点是同角三角函数的关系,解题的关键是熟练的掌握同角三角函数的关系.12、1【解析】
先分别求出第1个、第2个、第3个正方形的面积,由此总结规律,得到第n个正方形的面积,将n=2018代入即可求出第2018个正方形的面积.【详解】:∵第1个正方形的面积为:1+4×12×2×1=5=51;
第2个正方形的面积为:5+4×12×25×5=25=52;
第3个正方形的面积为:25+4×12×225×25=125=53【点睛】本题考查了规律型:图形的变化类,解题的关键是得到第n个正方形的面积.13、【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两盏灯泡同时发光的情况,再利用概率公式求解即可求得答案.【详解】解:画树状图得:由树状图得:共有6种结果,且每种结果的可能性相同,其中能让两盏灯泡同时发光的是闭合开关为:K1、K3与K3、K1共两种结果,∴能让两盏灯泡同时发光的概率,故答案为:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.14、3【解析】试题分析:根据点D为AB的中点可得:CD为直角三角形斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=6,根据E、F分别为中点可得:EF为△ABC的中位线,根据中位线的性质可得:EF=AB=3.考点:(1)、直角三角形的性质;(2)、中位线的性质15、【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长则所得到的侧面展开图形面积.考点:勾股定理,圆锥的侧面积公式点评:解题的关键是熟记圆锥的侧面积公式:圆锥的侧面积底面半径母线.16、1【解析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.解:设黄球的个数为x个,根据题意得:=2/3解得:x=1.∴黄球的个数为1.三、解答题(共8题,共72分)17、(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.【解析】分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=-1的交点为M,此时MA+MC的值最小.把x=-1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.详解:(1)依题意得:,解得:,∴抛物线的解析式为.∵对称轴为,且抛物线经过,∴把、分别代入直线,得,解之得:,∴直线的解析式为.(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,∴.即当点到点的距离与到点的距离之和最小时的坐标为.(注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).(3)设,又,,∴,,,①若点为直角顶点,则,即:解得:,②若点为直角顶点,则,即:解得:,③若点为直角顶点,则,即:解得:,.综上所述的坐标为或或或.点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.18、(1)①点C的坐标为(-3,9);②滑动的距离为6(﹣1)cm;(2)OC最大值1cm.【解析】试题分析:(1)①过点C作y轴的垂线,垂足为D,根据30°的直角三角形的性质解答即可;②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,根据锐角三角函数和勾股定理解答即可;(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,证得△ACE∽△BCD,利用相似三角形的性质解答即可.试题解析:解:(1)①过点C作y轴的垂线,垂足为D,如图1:在Rt△AOB中,AB=1,OB=6,则BC=6,∴∠BAO=30°,∠ABO=60°,又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=3,所以点C的坐标为(﹣3,9);②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:AO=1×cos∠BAO=1×cos30°=6.∴A'O=6﹣x,B'O=6+x,A'B'=AB=1在△A'OB'中,由勾股定理得,(6﹣x)2+(6+x)2=12,解得:x=6(﹣1),∴滑动的距离为6(﹣1);(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:则OE=﹣x,OD=y,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,∴△ACE∽△BCD,∴,即,∴y=﹣x,OC2=x2+y2=x2+(﹣x)2=4x2,∴当|x|取最大值时,即C到y轴距离最大时,OC2有最大值,即OC取最大值,如图,即当C'B'旋转到与y轴垂直时.此时OC=1,故答案为1.考点:相似三角形综合题.19、(1)1;(2)【解析】
(1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【详解】解:(1)设口袋中黄球的个数为个,根据题意得:解得:=1经检验:=1是原分式方程的解∴口袋中黄球的个数为1个(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况∴两次摸出都是红球的概率为:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.20、(1)EF∥BD,见解析;(2)①AE=AM,理由见解析;②△AEM能为等边三角形,理由见解析;(3)△ANF的面积不变,理由见解析【解析】
(1)依据DE=BF,DE∥BF,可得到四边形DBFE是平行四边形,进而得出EF∥DB;(2)依据已知条件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等边三角形,则∠EAM=60°,依据△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即当DE=16−8时,△AEM是等边三角形;(3)设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,依据△DEN∽△BNA,即可得出PN=,根据S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面积不变.【详解】解:(1)EF∥BD.证明:∵动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,∴DE=BF,又∵DE∥BF,∴四边形DBFE是平行四边形,∴EF∥DB;(2)①AE=AM.∵EF∥BD,∴∠F=∠ABD=45°,∴MB=BF=DE,∵正方形ABCD,∴∠ADC=∠ABC=90°,AB=AD,∴△ADE≌△ABM,∴AE=AM;②△AEM能为等边三角形.若△AEM是等边三角形,则∠EAM=60°,∵△ADE≌△ABM,∴∠DAE=∠BAM=15°,∵tan∠DAE=,AD=8,∴2﹣=,∴DE=16﹣8,即当DE=16﹣8时,△AEM是等边三角形;(3)△ANF的面积不变.设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,∵CD∥AB,∴△DEN∽△BNA,∴=,∴,∴PN=,∴S△ANF=AF×PN=×(x+8)×=32,即△ANF的面积不变.【点睛】本题属于四边形综合题,主要考查了平行四边形的判定与性质,等边三角形的性质,全等三角形的判定与性质,解直角三角形以及相似三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造相似三角形,利用全等三角形的对应边相等,相似三角形的对应边成比例得出结论.21、(I)65°;(II)72°【解析】
(I)如图①,连接OB,先利用切线的性质得∠OBF=90°,而OA⊥CD,所以∠OED=90°,利用四边形内角和可计算出∠AOB=130°,然后根据等腰三角形性质和三角形内角和计算出∠1=∠A=25°,从而得到∠2=65°,最后利用三角形内角和定理计算∠BGF的度数;(II)如图②,连接OB,BO的延长线交AC于H,利用切线的性质得OB⊥BF,再利用AC∥BF得到BH⊥AC,与(Ⅰ)方法可得到∠AOB=144°,从而得到∠OBA=∠OAB=18°,接着计算出∠OAH=54°,然后根据圆周角定理得到∠BDG的度数.【详解】解:(I)如图①,连接OB,∵BF为⊙O的切线,∴OB⊥BF,∴∠OBF=90°,∵OA⊥CD,∴∠OED=90°,∴∠AOB=180°﹣∠F=180°﹣50°=130°,∵OA=OB,∴∠1=∠A=(180°﹣130°)=25°,∴∠2=90°﹣∠1=65°,∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;(II)如图②,连接OB,BO的延长线交AC于H,∵BF为⊙O的切线,∴OB⊥BF,∵AC∥BF,∴BH⊥AC,与(Ⅰ)方法可得到∠AOB=180°﹣∠F=180°﹣36°=144°,∵OA=OB,∴∠OBA=∠OAB=(180°﹣144°)=18°,∵∠AOB=∠OHA+∠OAH,∴∠OAH=144°﹣90°=54°,∴∠BAC=∠OAH+∠OAB=54°+18°=72°,∴∠BDG=∠BAC=72°.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.22、(1);(2);(3)P1(3,-3),P2(,3),P3(,3).【解析】
(1)将的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式;
(2)根据的坐标,易求得直线的解析式.由于都是定值,则的面积不变,若四边形面积最大,则的面积最大;过点作轴交于,则可得到当面积有最大值时,四边形的面积最大值;(3)本题应分情况讨论:①过作轴的平行线,与抛物线的交点符合点的要求,此时的纵坐标相同,代入抛物线的解析式中即可求出点坐标;②将平移,令点落在轴(即点)、点落在抛物线(即点)上;可根据平行四边形的性质,得出点纵坐标(纵坐标的绝对值相等),代入抛物线的解析式中即可求得点坐标.【详解】解:(1)把代入,可以求得∴(2)过点作轴分别交线段和轴于点,在中,令,得设直线的解析式为可求得直线的解析式为:∵S四边形ABCD设当时,有最大值此时四边形ABCD面积有最大值(3)如图所示,如图:①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥BC交x轴于点E1,此时四边形BP1CE1为平行四边形,
∵C(0,-3)
∴设P1(x,-3)
∴x2-x-3=-3,解得x1=0,x2=3,
∴P1(3,-3);
②平移直线BC交x轴于点E,交x轴上方的抛物线于点P,当BC=PE时,四边形BCEP为平行四边形,
∵C(0,-3)
∴设P(x,3),
∴x2-x-3=3,
x2-3x-8=0
解得x=或x=,
此时存在点P2(,3)和P3(,3),
综上所述存在3个点符合题意,坐标分别是P1(3,-3),P2(,3),P3(,3).【点睛】此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识,综合性强,难度较大.23、(1)当0<x≤1时,PD=1-x,当1<x≤14时,PD=x-1.(2)y=;(3)5≤x≤9【解析】
(1)分点P在线段CD或在线段AD上两种情形分别求解即可.
(2)分三种情形:①当5≤x≤1时,如图1中,根据y=S△DPB,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 脱硝催化剂制备工艺改进-洞察分析
- 线粒体基因组多样性研究-洞察分析
- 虚拟现实在影视制作中的潜力-洞察分析
- 水文气候变化影响研究-洞察分析
- 胸膜炎临床诊疗进展-洞察分析
- 2024年桂东人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年柳州市红十字会医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 兼职销售合同(2篇)
- 2024年粤教版必修1地理下册阶段测试试卷含答案
- 2024年杭州师范大学附属医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 65mn弹簧钢热处理工艺
- 水电风电项目审批核准流程课件
- 足球教练员素质和角色
- 初中八年级语文课件 桃花源记【省一等奖】
- 名校长工作总结汇报
- 商务接待礼仪流程
- 护理不良事件用药错误讲课
- 新教材人教版高中英语选择性必修第一册全册教学设计
- 2024北京大兴区初三(上)期末化学试卷及答案
- 媒体与新闻法律法规法律意识与职业素养
- 推土机-推土机构造与原理
评论
0/150
提交评论