版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省六安市2025届数学高一上期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的最小值是()A.1 B.2C.3 D.42.已知O是所在平面内的一定点,动点P满足,则动点P的轨迹一定通过的()A.内心 B.外心C.重心 D.垂心3.设集合,则中元素的个数为()A.0 B.2C.3 D.44.过点,且圆心在直线上的圆的方程是()A. B.C. D.5.已知函数,则A.是奇函数,且在R上是增函数 B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数 D.是偶函数,且在R上是减函数6.已知函数,记,,,则,,的大小关系为()A. B.C. D.7.已知角终边上一点,则A. B.C. D.8.已知,,若对任意,或,则的取值范围是A. B.C. D.9.命题:“,”的否定是()A., B.,C., D.,10.已知函数是定义在上的奇函数,当时,,则当时,表达式是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数在上单调递增,且为奇函数,若,则满足的的取值范围为__________12.已知函数若是函数的最小值,则实数a的取值范围为______13.已知函数集合,若集合中有3个元素,则实数的取值范围为________14.已知,且,若不等式恒成立,则实数的最大值是__________.15._____________16.当时x≠0时的最小值是____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数定义域是,.(1)求函数的定义域;(2)若函数,求函数的最小值18.环保生活,低碳出行,电动汽车正成为人们购车的热门选择.某型号的电动汽车在一段国道上进行测试,汽车行驶速度低于80km/h.经多次测试得到该汽车每小时耗电量(单位:Wh)与速度(单位:km/h)的数据如下表所示:为了描述国道上该汽车每小时耗电量与速度的关系,现有以下三种函数模型供选择:,且,,()(1)当时,请选出你认为最符合表格中所列数据的函数模型,并说明理由;(2)求出(1)中所选函数模型的函数解析式;(3)根据(2)中所得函数解析式,求解如下问题:现有一辆同型号电动汽车从地驶到地,前一段是200km的国道,后一段是60km的高速路(汽车行驶速度不低于80km/h),若高速路上该汽车每小时耗电量(单位:Wh)与速度(单位:km/h)的关系满足,则如何行使才能使得总耗电量最少,最少为多少?19.某校高一(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是元,经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成:一部分是购买纯净水的费用,另一部分是其他费用780元,其中纯净水的销售价(元/桶)与年购买总量(桶)之间满足如图所示的关系.(Ⅰ)求与的函数关系;(Ⅱ)当为120时,若该班每年需要纯净水380桶,请你根据提供的信息分析一下:该班学生集体改饮桶装纯净水与个人买饮料相比,哪一种花钱更少?20.如图,在平面直角坐标系中,锐角和钝角的顶点与原点重合,始边与轴的非负半轴重合,终边分别与单位圆交于,两点,且.(1)求的值;(2)若点的横坐标为,求的值.21.已知函数(1)求的定义域;(2)判断的奇偶性并予以证明;(3)求不等式的解集
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】采用拼凑法,结合基本不等式即可求解.【详解】因为,,当且仅当时取到等号,故的最小值是3.故选:C2、A【解析】表示的是方向上的单位向量,画图象,根据图象可知点在的角平分线上,故动点必过三角形的内心.【详解】如图,设,,已知均为单位向量,故四边形为菱形,所以平分,由得,又与有公共点,故三点共线,所以点在的角平分线上,故动点的轨迹经过的内心.故选:A.3、B【解析】先求出集合,再求,最后数出中元素的个数即可.【详解】因集合,,所以,所以,则中元素的个数为2个.故选:B4、B【解析】由题设得的中垂线方程为,其与交点即为所求圆心,并应用两点距离公式求半径,写出圆的方程即可.【详解】由题设,的中点坐标为,且,∴的中垂线方程为,联立,∴,可得,即圆心为,而,∴圆的方程是.故选:B5、A【解析】分析:讨论函数的性质,可得答案.详解:函数的定义域为,且即函数是奇函数,又在都是单调递增函数,故函数在R上是增函数故选A.点睛:本题考查函数的奇偶性单调性,属基础题.6、C【解析】根据题意得在上单调递增,,进而根据函数的单调性比较大小即可.【详解】解:因为函数定义域为,,故函数为奇函数,因为在上单调递增,在上单调递减,所以在上单调递增,因为,所以,所以,故选:C.7、C【解析】由题意利用任意角的三角函数的定义,求得的值【详解】∵角终边上一点,∴,,,则,故选C【点睛】本题主要考查任意角的三角函数的定义,属于基础题8、C【解析】先判断函数g(x)的取值范围,然后根据或成立求得m的取值范围.【详解】∵g(x)=﹣2,当x<时,恒成立,当x≥时,g(x)≥0,又∵∀x∈R,f(x)<0或g(x)<0,∴f(x)=m(x﹣2m)(x+m+3)<0在x≥时恒成立,即m(x﹣2m)(x+m+3)<0在x≥时恒成立,则二次函数y=m(x﹣2m)(x+m+3)图象开口只能向下,且与x轴交点都在(,0)的左侧,∴,即,解得<m<0,∴实数m的取值范围是:(,0)故选C【点睛】本题主要考查指数函数和二次函数的图象和性质,根据条件确定f(x)=m(x﹣2m)(x+m+3)<0在x≥时恒成立是解决本题的关键,综合性较强,难度较大9、C【解析】根据含有一个量词的命题的否定形式,全称命题的否定是特称命题,可得答案.【详解】命题:“,”是全称命题,它的否定是特称命题:,,故选:C10、D【解析】若,则,利用给出的解析式求出,再由奇函数的定义即,求出.【详解】设,则,当时,,,函数是定义在上的奇函数,,,故选D.【点睛】本题考查了函数奇偶性在求解析式的应用,属于中档题.本题题型可归纳为“已知当时,函数,则当时,求函数的解析式”.有如下结论:若函数为偶函数,则当时,函数的解析式为;若为奇函数,则函数的解析式为二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据题意,f(x)为奇函数,若f(2)=1,则f(−2)=-1,f(x)在(−∞,+∞)单调递增,且−1⩽f(x−2)⩽1,即f(-2)⩽f(x−2)⩽f(2),则有−2⩽x−2⩽2,解可得0⩽x⩽4,即x的取值范围是;故答案为.12、【解析】考虑分段函数的两段函数的最小值,要使是函数的最小值,应满足哪些条件,据此列出关于a的不等式,解得答案.【详解】要使是函数的最小值,则当时,函数应为减函数,那么此时图象的对称轴应位于y轴上或y轴右侧,即当时,,当且仅当x=1时取等号,则,解得,所以,故答案为:.13、或【解析】令,记的两根为,由题知的图象与直线共有三个交点,从而转化为一元二次方程根的分布问题,然后可解.【详解】令,记的零点为,因为集合中有3个元素,所以的图象与直线共有三个交点,则,或或当时,得,,满足题意;当时,得,,满足题意;当时,,解得.综上,t的取值范围为或.故答案为:或14、9【解析】利用求的最小值即可.【详解】,当且仅当a=b=时取等号,不等式恒成立,则m≤9,故m的最大值为9.故答案为:9.15、【解析】利用指数与对数的运算性质,进行计算即可【详解】.【点睛】本题考查了指数与对数的运算性质,需要注意,属于基础题16、【解析】直接利用基本不等式的应用求出结果【详解】解:由于,所以(当且仅当时,等号成立)故最小值为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由定义域,求得的定义域即为所求;(2)求函数的值域,再代入求最值【详解】(1)的定义域是,即的定义域是,所以的定义域为;(2),令,,,即,所以,当时取到【点睛】求函数值域要先准确求出函数的定义域,注意函数解析式有意义的条件,及题目对自变量的限制条件,复合函数相关问题要注意整体代换思想18、(1),理由见解析(2)(3)当该汽车在国道上的行驶速度为,在高速路上的行驶速度为时,总耗电量最少,最少为【解析】(1)由表格数据判断合适的函数关系,(2)代入数据列方程组求解,(3)分别表示在国道与高速路上的耗电量,由单调性求其取最小值时的速度.【小问1详解】若选,则当时,该函数无意义,不合题意若选,显然该函数是减函数,这与矛看,不合题意故选择【小问2详解】选择,由表中数据得,解得,所以当时,【小问3详解】由题可知该汽车在国道路段所用时间为,所耗电量,所以当时,该汽车在高速路段所用时间为,所耗电量,易知在上单调递增,所以故当该汽车在国道上的行驶速度为,在高速路上的行驶速度为时,总耗电量最少,最少为19、(Ⅰ);(Ⅱ)该班学生集体改饮桶装纯净水花钱更少.【解析】(Ⅰ)根据题意设出直线方程,再代入图示数据,即可得出与的函数关系;(Ⅱ)分别求出两种情形下的年花费费用,进行比较即可.【详解】(Ⅰ)根据题意,可设,时,;时,,,解得,所以与的函数关系为:;(Ⅱ)该班学生购买饮料的年费用为(元),由(Ⅰ)知,当时,,故该班学生购买纯净水的年费用为:(元),比购买饮料花费少,故该班学生集体改饮桶装纯净水花钱更少.【点睛】本题考查函数模型的选取及实际应用,属于简单题.20、(1);(2).【解析】(1)根据给定条件可得,再利用诱导公式化简计算作答.(2)由给定条件求出,再利用和角公式、倍角公式计算作答.【小问1详解】依题意,,所以.【小问2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阿德的梦课件
- 黑龙江省大庆外国语学校2024-2025学年高三上学期期中考试语文试题 含解析
- 2024年度电工企业环境保护与可持续发展合同
- 《Wilson病认知障碍与中医证型及肠道菌群变化的相关性研究》
- 2024年度电力企业安全生产管理劳务合同
- 2024承揽加工合同书
- 2024美容院转让合同范本2
- 肥胖症怎么办
- 2024年度汽车销售维修合同
- 2024上海市户外广告发布承揽合同范本
- 基督徒价值观课件
- 初中物理-探索宇宙教学设计学情分析教材分析课后反思
- 抗凝药物的使用和注意事项课件
- 《大学生爱国主义》课件
- 水利工程测量的内容和任务
- 小学班长培训课件
- +Unit+12大单元教学整体单元分析 人教版九年级英语全册+
- 数控车床编程与加工 课件 任务7 内沟槽加工
- 《快递操作须知》课件
- 小学生体验式学习的实践案例分享
- 管理哲学导论(第3版) 课件 第五章 效率、人性与责任
评论
0/150
提交评论