




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018年420模拟考试数学试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列复数中虚部最大的是()A.B.C.D.2.已知集合,,则()A.B.C.D.3.若角的终边经过点,则()A.B.C.D.4.若双曲线的一个焦点为,则()A.B.C.D.5.在中,,,且,则()A.B.C.D.6.甲、乙两个几何体的三视图如图所示(单位相同),记甲、乙两个几何体的体积分别为,,则()A.B.C.D.7.的展开式中的系数为()A.B.C.D.8.我国古代数学名著《九章算术》里有一道关于玉石的问题:“今有玉方一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并重十一斤(两).问玉、石重各几何?”如图所示的程序框图反映了对此题的一个求解算法,运行该程序框图,则输出的,分别为()A.,B.,C.,D.,9.记不等式组表示的区域为,点的坐标为.有下面四个命题:,; ,;,; ,.其中的真命题是()A.,B.,C.,D.,10.已知底面是正方形的直四棱柱的外接球的表面积为,且,则与底面所成角的正切值为()A.B.C.D.11.已知函数,设,,,则()A.B.C.D.12.已知椭圆的右焦点关于直线的对称点为,点为的对称中心,直线的斜率为,且的长轴不小于,则的离心率()A.存在最大值,且最大值为B.存在最大值,且最大值为C.存在最小值,且最小值为D.存在最小值,且最小值为第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若向量与向量共线,则.14.若函数的最大值为,则的最小正周期为.15.现有如下假设:所有纺织工都是工会成员,部分梳毛工是女工,部分纺织工是女工,所有工会成员都投了健康保险,没有一个梳毛工投了健康保险.下列结论可以从上述假设中推出来的是.(填写所有正确结论的编号)①所有纺织工都投了健康保险②有些女工投了健康保险③有些女工没有投健康保险④工会的部分成员没有投健康保险16.若函数的最小值为,则的取值范围为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.设为数列的前项和,已知,.(1)证明:为等比数列;(2)求的通项公式,并判断,,是否成等差数列?18.根据以往的经验,某建筑工程施工期间的降水量(单位:)对工期的影响如下表:降水量工期延误天数0136根据某气象站的资料,某调查小组抄录了该工程施工地某月前天的降水量的数据,绘制得到降水量的折线图,如下图所示.(1)根据降水量的折线图,分别求该工程施工延误天数的频率;(2)以(1)中的频率作为概率,求工期延误天数的分布列及数学期望与方差.19.如图,在直三棱柱中,,为棱的中点,.(1)证明:平面;(2)设二面角的正切值为,,,求异面直线与所成角的余弦值.20.已知点是抛物线上一点,且到的焦点的距离为.(1)求抛物线在点处的切线方程;(2)若是上一动点,且不在直线上,过作直线垂直于轴且交于点,过作的垂线,垂足为.证明:为定值,并求该定值.21.已知函数.(1)讨论的单调性;(2)当时,,求的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修44:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.(1)写出直线的普通方程及曲线的直角坐标方程;(2)已知点,点,直线过点且与曲线相交于,两点,设线段的中点为,求的值.23.选修45:不等式选讲已知函数.(1)求不等式的解集;(2)若对恒成立,求的取值范围.
2018年420模拟考试数学试卷参考答案(理科)一、选择题15:CDBBA610:DCCAC11、12:DB二、填空题13.14.15.①②③16.三、解答题17.证明:∵,,∴,∴,∴,,∴是首项为公比为的等比数列.(2)解:由(1)知,,∴,∴,∴,∴,即,,成等差数列.18.解:(1)∵的天数为,∴的频率为.∵的天数为,∴的频率为.∵的天数为,∴的频率为.∵的天数为,∴的频率为.(2)的分布列为01360.50.30.10.1..19.(1)证明:取的中点,连接,,∵侧面为平行四边形,∴为的中点,∴,又,∴,∴四边形为平行四边形,则.∵平面,平面,∴平面.(2)解:过作于,连接,则即为二面角的平面角.∵,,∴.以为原点,建立空间直角坐标系,如图所示,则,,,,则,,.∵,∴,∴异面直线与所成角的余弦值为.20.解:(1)依题意得∴.∵,∴,故的方程为.由得,,∴,又,∴所示切线的方程为,即.(2)设(,且),则的横坐标为,.(法一)由题可知,与联立可得,,所以,则为定值.(法二)∵,,∴∴为定值.21.解:(1),当时,,∴在上单调递减.当时,令,得;令,得.∴的单调递减区间为,单调递增区间为.当时,令,得;令,得.∴的单调递减区间为,单调递增区间为.(2)当时,在上单调递减,∴,不合题意.当时,,不合题意.当时,,在上单调递增,∴,故满足题意.当时,在上单调递减,在单调递增,∴,故不满足题意.综上,的取值范围为.22.解:(1)由直线的参数方程消去,得的普通方程为.由得,所以曲线的直角坐标方程为.(2)易得点在上,所以,所以.所以的参数方程为,代入中,得.设,,所对应的参数分别为,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 橱柜店合伙合同协议书
- 协议书可以当成合同吗
- 普通厨师聘用合同协议书
- 试驾车租车合同协议书
- 2025半年个人租房合同标准范本
- 家电维修行业合同协议书
- 2025工程承包合同样本范本
- 2025现代家居销售合同模板
- 婚庆合同无故终止协议书
- 名言哲理面试题及答案
- 最简单装修合同协议书
- DB32/T 4622.4-2023采供血过程风险管理第4部分:血液成分制备和供应风险控制规范
- 2025年供应链管理专业考试试题及答案
- 消防监护人考试题及答案
- GB 35181-2025重大火灾隐患判定规则
- 2025山东能源集团营销贸易限公司招聘机关部分业务人员31人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年漳州市招聘中小学幼儿园教师真题
- 汉代文化课件图片高清
- 2025河南中考:政治必背知识点
- 互联网公司网络安全工程师入职培训
- 【四川卷】【高二】四川省成都市蓉城名校联盟2023-2024学年高二下学期期末联考数学试题
评论
0/150
提交评论