2024年湖北省武汉市部分重点学校数学九年级第一学期开学学业水平测试模拟试题【含答案】_第1页
2024年湖北省武汉市部分重点学校数学九年级第一学期开学学业水平测试模拟试题【含答案】_第2页
2024年湖北省武汉市部分重点学校数学九年级第一学期开学学业水平测试模拟试题【含答案】_第3页
2024年湖北省武汉市部分重点学校数学九年级第一学期开学学业水平测试模拟试题【含答案】_第4页
2024年湖北省武汉市部分重点学校数学九年级第一学期开学学业水平测试模拟试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2024年湖北省武汉市部分重点学校数学九年级第一学期开学学业水平测试模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知关于x的方程x2-kx+6=0有两个实数根,则k的值不可能是()A.5 B.-8 C.2 D.42、(4分)如图,将长方形纸片ABCD折叠,使点B与点D重合,折痕为EF,已知AB=6cm,BC=18cm,则Rt△CDF的面积是()A.27cm2 B.24cm2 C.22cm2 D.20cm23、(4分)下列不能反映一组数据集中趋势的是()A.众数 B.中位数 C.方差 D.平均数4、(4分)某班名学生的身高情况如下表:身高人数则这名学生身高的众数和中位数分别是()A. B. C. D.5、(4分)某数学兴趣小组6名成员通过一次数学竞赛进行组内评比,他们的成绩分别是89,92,91,93,96,91,则关于这组数据说法正确的是()A.中位数是92.5 B.平均数是92 C.众数是96 D.方差是56、(4分)如图,已知△ABC为直角三角形,∠B=90°,若沿图中虚线剪去∠B,则∠1+∠2=()A.90° B.135° C.270° D.315°7、(4分)如图,是由两个大小完全相同的圆柱形容器在中间连通而成的可以盛水的器具,现匀速地向容器A中注水,则容器A中水面上升的高度h随时间t变化的大致图象是()A. B.C. D.8、(4分)把边长为3的正方形绕点A顺时针旋转45°得到正方形,边与交于点O,则四边形的周长是()A.6 B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)计算:_______,化简__________.10、(4分)设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=_____.11、(4分)若分式方程有增根x=2,则a=___.12、(4分)如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为____________.13、(4分)如图,在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,动点P,Q分别从A,C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动(Q运动到B时两点同时停止运动),则________后四边形ABQP为平行四边形.三、解答题(本大题共5个小题,共48分)14、(12分)如图,四边形OABC为矩形,点B坐标为(4,2),A,C分别在x轴,y轴上,点F在第一象限内,OF的长度不变,且反比例函数经过点F.(1)如图1,当F在直线y=x上时,函数图象过点B,求线段OF的长.(2)如图2,若OF从(1)中位置绕点O逆时针旋转,反比例函数图象与BC,AB相交,交点分别为D,E,连结OD,DE,OE.①求证:CD=2AE.②若AE+CD=DE,求k.③设点F的坐标为(a,b),当△ODE为等腰三角形时,求(a+b)2的值.15、(8分)为了调查甲,乙两台包装机分装标准质量为奶粉的情况,质检员进行了抽样调查,过程如下.请补全表一、表二中的空,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:)如下:甲:394,400,408,406,410,409,400,400,393,395乙:402,404,396,403,402,405,397,399,402,398整理数据:表一频数种类质量()甲乙____________003310________________________130分析数据:表二种类甲乙平均数401.5400.8中位数____________402众数400____________方差36.858.56得出结论:包装机分装情况比较好的是______(填甲或乙),说明你的理由.16、(8分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了“汉子听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉子得1分,本次决赛,学生成绩为x(分),且50≤x<100(无满分),将其按分数段分为五组,绘制出以下不完整表格:请根据表格提供的信息,解答以下问题:(1)本次决赛共有________名学生参加;(2)直接写出表中:a=,b=。(3)请补全右面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为________.17、(10分)计算:(1)﹣;(2)18、(10分)(1)分解因式:①②(2)解不等式组,并把解集在数轴上表示出来.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)请你写出一个一次函数,使它经过二、三、四象限_____.20、(4分)若二次根式有意义,则x的取值范围为__________.21、(4分)请观察一列分式:﹣,﹣,…则第11个分式为_____.22、(4分)在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,投到红球的概率是__________.23、(4分)平行四边形ABCD中,若,=_____.二、解答题(本大题共3个小题,共30分)24、(8分)王老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的八年(1)班和八年(2)班进行了检测。如图所示表示从两班随机抽取的10名学生的得分情况:(1)利用图中提供的信息,补全下表:班级平均分(分)中位数(分)众数(分)八年(1)班2424八年(2)班24(2)你认为那个班的学生纠错的得分情况比较整齐一些,通过计算说明理由.25、(10分)小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y与上市时间x的函数解析式;(3)试比较第10天与第12天的销售金额哪天多?26、(12分)先化简、再求值.,其中,.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

根据判别式的意义得到k2≥24,然后对各选项进行判断.【详解】解:根据题意得△=(-k)2-4×6≥0,即k2≥24,故选:D.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.2、B【解析】

求Rt△CDF的面积,CD边是直角边,有CD=AB=6cm,只要求出边FC即可.由于点B与点D重合,所以有FD=BF=BC-FC=18-FC,利用勾股定理可求出FC了.【详解】解:设FC=x,Rt△CDF中,CD=6cm,FC=x,又折痕为EF,

∴FD=BF=BC-FC=18-FC=18-x,

Rt△CDF中,DF2=FC2+CD2,

即(18-x)2=x2+62,

解得x=8,

∴面积为故选:B.解决本题的关键是根据折叠及矩形的性质利用勾股定理求得CF的长度;易错点是得到DF与CF的长度和为18的关系.3、C【解析】试题分析:平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数.故答案选C.考点:统计量的选择.4、D【解析】

根据众数和中位数的定义求解即可.一组数据中,出现次数最多的数就叫这组数据的众数.把一组数据按从小到大的顺序排列,中间的一个数字(或两个数字的平均数)叫做这组数据的中位数.【详解】解:由图可得出这组数据中1.72m出现的次数最多,因此,这名学生身高的众数是1.72m;把这一组数据按从小到大的顺序排列,中间的两个数字是1.72m、1.72m,因此,这名学生身高的中位数是1.72m.故选:D.本题考查的知识点是众数以及中位数,掌握众数以及中位数的定义是解此题的关键.5、B【解析】试题解析:这组数据按照从小到大的顺序排列为:89,91,91,92,93,96,则中位数为:,故A错误;平均数为:,故B正确;众数为:91,故C错误;方差S2==,故D错误.故选A.6、C【解析】

如图,根据题意可知∠1=90°+∠BNM,∠2=90°+∠BMN,然后结合三角形内角和定理即可推出∠1+∠2的度数.【详解】解:∵△ABC为直角三角形,∠B=90°∴∠1=90°+∠BNM,∠2=90°+∠BMN,∠BMN+∠BNM=90°,

∴∠1+∠2=270°.

故选C.本题考查三角形的外角性质、三角形内角和定理,直角三角形的性质,解题的关键在于求证∠1=90°+∠BNM,∠2=90°+∠BMN.7、C【解析】

根据题意可以分析出各个过程中A中水面上的快慢,从而可以解答本题.【详解】由题意和图形可知,从开始到水面到达A和B连通的地方这个过程中,A中水面上升比较快,从水面到达A和B连通的地方到B中水面和A中水面持平这个过程中,A中水面的高度不变,从B中水面和A中水面持平到最后两个容器中水面上升到最高这个过程中,A中水面上升比较慢,故选C.本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.8、B【解析】

由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.【详解】连接BC′,∵旋转角∠BAB′=45∘,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′==3,∴BC′=3−3,在等腰Rt△OBC′中,OB=BC′=3−3,在直角三角形OBC′中,OC′=(3−3)=6−3,∴OD′=3−OC′=3−3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3−3+3−3=6.故选:B.此题考查正方形的性质,旋转的性质,解题关键在于利用勾股定理的知识求出BC′的长二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

先对通分,再化简计算得到答案;根据二次根式对进行化简,再去括号计算,即可得到答案.【详解】========本题考查分式的减法计算、二次根式的加减混合运算,解题的关键是掌握分式的减法计算、二次根式的加减混合运算.10、8【解析】

根据题意,已知直角三角形的一条直角边和斜边长,求另一直角边时直接利用勾股定理求斜边长即可.据此解答即可.【详解】解:由勾股定理的变形公式可得b==8,故答案为:8.本题考查了勾股定理的运用,属于基础题.本题比较简单,解答此类题的关键是灵活运用勾股定理,可以根据直角三角形中两条边求出另一条边的长度.11、﹣2.【解析】

先化简分式方程,再根据分式方程有增根的条件代入方程,最后求出方程的解即可.【详解】去分母得:x+2+ax=3x﹣6,把x=2代入得:4+2a=0,解得:a=﹣2,故答案为:﹣2.此题考查分式方程的解,解题关键在于掌握运算法则12、36°【解析】∵多边形ABCDE是正五边形,∴∠BAE==108°,∴∠1=∠2=(180°-∠BAE),即2∠1=180°-108°,∴∠1=36°.13、2s【解析】

设运动时间为t秒,则AP=t,QC=2t,根据四边形ABQP是平行四边形,得AP=BQ,则得方程t=6-2t即可求解.【详解】如图,设t秒后,四边形APQB为平行四边形,

则AP=t,QC=2t,BQ=6-2t,

∵AD∥BC,

∴AP∥BQ,

当AP=BQ时,四边形ABQP是平行四边形,

∴t=6-2t,

∴t=2,

当t=2时,AP=BQ=2<BC<AD,符合.

综上所述,2秒后四边形ABQP是平行四边形.故答案为2s.此题主要考查的是平行四边形的判定,熟练掌握平行四边形的判定方法是关键.三、解答题(本大题共5个小题,共48分)14、(1)OF=4;(2)①证明见解析;②k=;③96-16或36-4.【解析】

分析(1)由y=经过点B(2,4).,求出k的值,再利用F在直线y=x,求出m的值,最后利用勾股定理求解即可;(2)①利用反比例函数k的几何意义可求解;②Rt△EBD中,分别用n表示出BD、BE、DE,再利用勾股定理解答即可;③分三种情况讨论即可:OE=OD;OE=DE;OD=DE.详解:(1)∵F在直线y=x上∴设F(m,m)作FM⊥x轴∴FM=OM=m∵y=经过点B(2,4).∴k=8∴∴∴∴OF=4;(2)①∵函数的图象经过点D,E∴,∵OC=2,OA=4∴CO=2AE②由①得:CD=2AE∴可设:CD=2n,AE=n∴DE=CD+AE=3nBD=4-2n,BE=2-n在Rt△EBD,由勾股定理得:∴解得③CD=2c,AE=c情况一:若OD=DE∴∴∴情况二:若OE=DE∴∴情况三:OE=OD不存在.点睛:本题考查了反比例函数的性质,利用反比例函数的解析式求点的坐标,利用勾股定理得到方程,进而求出线段的长,注意解题时分类讨论的思想应用.15、整理数据:3,1,5;分析数据:400,402;得出结论:乙,理由详见解析.【解析】

整理数据:根据所给的数据填写表格一即可;分析数据:根据中位数、众数的定义求解即可;得出结论:结合表二中的数据解答即可.【详解】整理数据:表一中,甲组:393≤x<396的有3个,405≤x<408的有1个;乙组:402≤x<405的有5个;故答案为:3,1,5;分析数据:表二中,甲组:把10个数据按照从小到大顺序排列为:393,394,395,400,400,400,406,408,409,410,中位数为中间两个数据的平均数==400,乙组:出现次数最多的数据是402,∴众数是402;故答案为:400,402;得出结论:包装机分装情况比较好的是乙;理由如下:由表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙.故答案为:乙(答案不唯一,合理即可).本题考查了众数、中位数以及方差,掌握众数、中位数以及方差的定义及数据的整理是解题的关键.16、(1)50;(2)20,0.24;(3)详见解析;(4)52%.【解析】

(1)根据表格中的数据可以求得本次决赛的学生数;(2)根据(1)中决赛学生数,可以求得a、b的值;(3)根据(2)中a的值,可以将频数分布直方图补充完整;(4)根据表格中的数据可以求得本次大赛的优秀率.【详解】解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.4=20,b=12÷50=0.24,故答案为:20,0.24;(3)补全的频数分布直方图如右图所示,(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.4+0.12)×100%=52%,故答案为:52%.本题考查频数分布直方图、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.17、(1)﹣;(2)13﹣4.【解析】

(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.【详解】解:(1)原式=3﹣﹣2=﹣;(2)原式=5﹣4+4+(13﹣9)=9﹣4+4=13﹣4.本题考查了二次根式的运算,以及完全平方公式和平方差公式的运算,解题的关键是正确的运用运算法则进行运算.18、(1)①;②;(2)【解析】

(1)①直接提取公因式3m,再利用完全平方公式分解因式得出答案;②先去括号合并同类项,再利用平方差公式进行计算即可;(2)分别解不等式进而得出不等式组的解;【详解】解:(1)①原式②原式(2)解不等式①,得:解不等式②,得:则不等式组的解集为此题考查提公因式法与公式法分解因式,解一元一次不等式组,在数轴上表示不等式的解集,解题关键在于掌握运算法则.一、填空题(本大题共5个小题,每小题4分,共20分)19、答案不唯一:如y=﹣x﹣1.【解析】

根据已知可画出此函数的简图,再设此一次函数的解析式为:y=kx+b,然后可知:k<0,b<0,即可求得答案.【详解】∵图象经过第二、三、四象限,∴如图所示.设此一次函数的解析式为:y=kx+b,∴k<0,b<0,∴此题答案不唯一:如y=﹣x﹣1.故答案为:答案不唯一:如y=﹣x﹣1.本题考查了一次函数的性质.题目难度不大,注意数形结合思想的应用.20、x≤1【解析】

解:∵二次根式有意义,∴1-x≥0,∴x≤1.故答案为:x≤1.21、【解析】

分母中y的次数是分式的序次的2倍加1,分子中x的次数与序次一致,分式的序次为奇数时,分式的符合为负,分式的序次为偶数时,分式的符合为正,由此即可解决问题.【详解】根据规律可知:则第11个分式为﹣.故答案为﹣.本题考查了分式的定义:叫分式,其中A、B都是整式,并且B中含有字母.也考查了从特殊到一般的规律的探究.22、【解析】

由在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同,直接利用概率公式求解即可求得答案.【详解】∵在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.∴从中随机摸出一个球,摸到红球的概率是:故答案为:此题考查概率公式,掌握运算法则是解题关键23、120°【解析】

根据平行四边形对角相等求解.【详解】平行四边形ABCD中,∠A=∠C,又,∴∠A=120°,故填:120°.此题主要考查平行四边形的性质,解题的关键是熟知平行四边形对角相等.二、解答题(本大题共3个小题,共30分)24、(1)八年(1)班的平均数为24,八年(2)班的中位数为24,众数为21;(2)八年(1)成绩比较整齐.【解析】【分析】(1)分别根据平均数、中位数、众数的定义逐一进行求解即可得;(2)根据方差的公式分别计算两个班的方差进行比较即可得.【详解】(1)由图可知八年(1)班的成绩分别为24、21、27、24、21、27、21、24、27、24,所以八年(1)班的平均数分为(24+21+27+24+21+27+21+24+27+24)÷10=24分,八年(2)班的成绩从小到大排列为:15、21、21、21、24、24、27、27、30、30,八年(2)班的中位数为2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论