苏科版八年级数学上册尖子生同步培优题典专题1.4直角三角形全等的判定特训(原卷版+解析)_第1页
苏科版八年级数学上册尖子生同步培优题典专题1.4直角三角形全等的判定特训(原卷版+解析)_第2页
苏科版八年级数学上册尖子生同步培优题典专题1.4直角三角形全等的判定特训(原卷版+解析)_第3页
苏科版八年级数学上册尖子生同步培优题典专题1.4直角三角形全等的判定特训(原卷版+解析)_第4页
苏科版八年级数学上册尖子生同步培优题典专题1.4直角三角形全等的判定特训(原卷版+解析)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【讲练课堂】2022-2023学年八年级数学上册尖子生同步培优题典【苏科版】专题1.4直角三角形全等的判定【名师点睛】1、斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).2、直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.【典例剖析】【例1】(2021·江苏苏州·八年级期中)如图,已知BE⊥CD,BE=DE,BC=AD.(1)求证:△BEC≌△DEA;(2)求∠DFC的度数.【变式】(2021·江苏·镇江市江南学校八年级期中)已知:如图,ED⊥AB,FC⊥AB,垂足分别为D、C,AC=BD,AE=BF,求证:(1)△AED≌△BFC;(2)AE∥BF.【满分训练】一.选择题(共10小题)1.(2021秋•如皋市期中)如图,用纸板挡住部分直角三角形后,能画出与此直角三角形全等的三角形,其全等的依据是()A.SSS B.SAS C.ASA D.HL2.(2020秋•郫都区期末)如图,AB⊥BD,CD⊥BD,AD=BC,则能直接判断Rt△ABD≌Rt△CDB的理由是()A.HL B.ASA C.SAS D.SSS3.(2020秋•无锡期末)下列条件中,能判断两个直角三角形全等的是()A.有两条边分别相等 B.有一个锐角和一条边相等 C.有一条斜边相等 D.有一直角边和斜边上的高分别相等4.(2020秋•中山区期末)下列关于全等三角形的说法中,正确的是()A.周长相等的两个等边三角形全等 B.周长相等的两个等腰三角形全等 C.周长相等的两个直角三角形全等 D.周长相等的两个钝角三角形全等5.(2019秋•东海县期中)下列条件中,不能判定两个直角三角形全等的是()A.一组锐角和斜边分别对应相等 B.两个锐角分别对应相等 C.两组直角边分别对应相等 D.斜边和一组直角边分别对应相等6.(2019秋•沭阳县期中)如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O.如果AB=AC,那么图中全等的直角三角形的对数是()A.1 B.2 C.3 D.47.(2019秋•邳州市期中)下列条件不可以判定两个直角三角形全等的是()A.两条直角边对应相等 B.两个锐角对应相等 C.一条直角边和它所对的锐角对应相等 D.一个锐角和锐角所对的直角边对应相等8.(2019秋•兴化市期中)如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等的条件是()A.AC=A′C′,BC=B′C′ B.∠A=∠A′,AB=A′B′ C.AC=A′C′,AB=A′B′ D.∠B=∠B′,BC=B′C′9.(2021春•榆阳区期末)如图,∠C=∠D=90°,添加下列条件:①AC=AD;②∠ABC=∠ABD;③BC=BD,其中能判定Rt△ABC与Rt△ABD全等的条件的个数是()A.0 B.1 C.2 D.310.(2017春•来宾期末)如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是()A.HL B.ASA C.SAS D.AAS二.填空题(共6小题)11.(2021秋•高淳区期中)如图,在Rt△ABC和Rt△DEF中,∠C=∠F=90°,AC=DF,只需补充条件,就可以根据“HL”得到Rt△ABC≌Rt△DEF.12.(2020秋•秦淮区期末)结合图,用符号语言表达定理“斜边和一条直角边分别相等的两个直角三角形全等”的推理形式:在Rt△ABC和Rt△DEF中,∠C=∠F=90°,AC=DF∴Rt△ABC≌Rt△DEF.13.(2020秋•洛阳期末)如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件.14.(2021春•普宁市期中)如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需加条件.15.(2020秋•鼓楼区校级月考)如图,在△ABC中,AD⊥BC,垂足为D,BF=AC,CD=DF,证明图中两个直角三角形全等的依据是定理.16.(2019秋•高邮市月考)下列说法正确的有个.(1)两条边对应相等的两个直角三角形全等.(2)有一锐角和斜边对应相等的两直角三角形全等.(3)一条直角边和一个锐角对应相等的两直角三角形全等.(4)面积相等的两个直角三角形全等.三.解答题(共6小题)17.(2020秋•嵩县期中)如图,已知点A,B,C,D在同一条直线上,EA⊥AB,FD⊥AD,AB=CD,若用“HL”证明Rt△AEC≌△Rt△DFB,需添加什么条件?并写出你的证明过程.18.(2020春•岱岳区期末)如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足,AE=CF.求证:∠ACB=90°.19.(2019秋•铁东区期中)如图,∠A=∠D=90°,AB=DE,BF=EC.求证:Rt△ABC≌Rt△DEF.20.(2019春•合浦县期中)如图所示,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:Rt△ABE≌Rt△CBF.21.(2019秋•桐城市期末)如图,已知在△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F.(1)如图①过A的直线与斜边BC不相交时,求证:EF=BE+CF;(2)如图②过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,求:FE长.22.(2019秋•北流市期末)如图(1),AB⊥AD,ED⊥AD,AB=CD,AC=DE,试说明BC⊥CE的理由;如图(2),若△ABC向右平移,使得点C移到点D,AB⊥AD,ED⊥AD,AB=CD,AD=DE,探索BD⊥CE的结论是否成立,并说明理由.【讲练课堂】2022-2023学年八年级数学上册尖子生同步培优题典【苏科版】专题1.4直角三角形全等的判定【名师点睛】1、斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).2、直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.【典例剖析】【例1】(2021·江苏苏州·八年级期中)如图,已知BE⊥CD,BE=DE,BC=AD.(1)求证:△BEC≌△DEA;(2)求∠DFC的度数.【解析】【分析】(1)由“HL”可证Rt△BEC≌Rt△DEA;(2)由全等三角形的性质可得∠B=∠D,由三角形内角和定理可求∠DFC=90°.(1)证明:∵BE⊥CD,∴∠BEC=∠DEA=90°,在Rt△BEC和Rt△DEA中:BE=DEBC=DA∴Rt△BEC≌Rt△DEA(HL);(2)解:∵Rt△BEC≌Rt△DEA,∴∠B=∠D,∵∠DAE=∠BAF,∴∠BFA=∠DEA=90°,∴∠DFC=90°.【点睛】本题考查了全等三角形的判定和性质,证明三角形全等是解题的关键.【变式】(2021·江苏·镇江市江南学校八年级期中)已知:如图,ED⊥AB,FC⊥AB,垂足分别为D、C,AC=BD,AE=BF,求证:(1)△AED≌△BFC;(2)AE∥BF.【解析】【分析】(1)求出∠EDA=∠FCB=90°,AD=BC,根据HL证明RtΔ(2)根据全等三角形的性质得出∠A=∠B,根据平行线的判定得出即可.【详解】解:(1)∵ED⊥AB,FC⊥AB,∴∠EDA=∠FCB=90°∵AC=BD,∴AC+CD=BD+CD,即AD=BC在RtΔAED和AD=BCAE=BF∴Rt(2)由(1)知Rt∴∠A=∠B∴AE∥BF.【点睛】本题考查了全等三角形的性质和判定和平行线的判定,能熟练地运用定理进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等;全等三角形的判定定理有SAS,ASA,AAS,SSS,HL.【满分训练】一.选择题(共10小题)1.(2021秋•如皋市期中)如图,用纸板挡住部分直角三角形后,能画出与此直角三角形全等的三角形,其全等的依据是()A.SSS B.SAS C.ASA D.HL【分析】根据全等三角形的判定方法解决此题.【解答】解:由图得:遮挡住的三角形中露出两个角及其夹边.∴根据三角形的判定方法ASA可解决此题.故选:C.2.(2020秋•郫都区期末)如图,AB⊥BD,CD⊥BD,AD=BC,则能直接判断Rt△ABD≌Rt△CDB的理由是()A.HL B.ASA C.SAS D.SSS【分析】由“HL”可证Rt△ABD和Rt△CDB.【解答】解:∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),故选:A.3.(2020秋•无锡期末)下列条件中,能判断两个直角三角形全等的是()A.有两条边分别相等 B.有一个锐角和一条边相等 C.有一条斜边相等 D.有一直角边和斜边上的高分别相等【分析】根据全等三角形的判定定理:AAS、SAS、ASA、SSS及直角三角形的判定定理HL对4个选项逐个分析,然后即可得出答案.【解答】解:A、两边分别相等,但是不一定是对应边,不能判定两直角三角形全等,故此选项不符合题意;B、一条边和一锐角对应相等,不能判定两直角三角形全等,故此选项不符合题意;C、有一条斜边相等,两直角边不一定对应相等,不能判定两直角三角形全等,故此选项不符合题意;D、有一条直角边和斜边上的高对应相等的两个直角三角形全等,故此选项符合题意;故选:D.4.(2020秋•中山区期末)下列关于全等三角形的说法中,正确的是()A.周长相等的两个等边三角形全等 B.周长相等的两个等腰三角形全等 C.周长相等的两个直角三角形全等 D.周长相等的两个钝角三角形全等【分析】根据全等三角形的概念、性质定理和判定定理判断即可.【解答】解:A、周长相等的两个等边三角形的三边对应相等,则这两个等边三角形全等,故本选项说法正确;B、周长相等的两个等腰三角形的对应边(对应角)不一定相等,则这两个等腰三角形不一定全等,故本选项说法错误;C、周长相等的两个直角三角形的对应边(对应角)不一定相等,则这两个等腰三角形不一定全等,故本选项说法错误;D、周长相等的两个钝角三角形全等的对应边(对应角)不一定相等,则这两个等腰三角形不一定全等,故本选项说法错误;故选:A.5.(2019秋•东海县期中)下列条件中,不能判定两个直角三角形全等的是()A.一组锐角和斜边分别对应相等 B.两个锐角分别对应相等 C.两组直角边分别对应相等 D.斜边和一组直角边分别对应相等【分析】由直角三角形全等判定依次判断可求解.【解答】解:A、若一组锐角和斜边分别对应相等,可证这两个直角三角形全等,故选项A不符合题意;B、若两个锐角分别对应相等,不能证明这两个直角三角形全等,故选项B符合题意;C、若两组直角边分别对应相等,可证这两个直角三角形全等,故选项C不符合题意;D、若斜边和一组直角边分别对应相等,可证这两个直角三角形全等,故选项D不符合题意;故选:B.6.(2019秋•沭阳县期中)如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O.如果AB=AC,那么图中全等的直角三角形的对数是()A.1 B.2 C.3 D.4【分析】共有3对,分别为△ADC≌△AEB、△BOD≌△COE、Rt△ADO≌Rt△AEO;做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找即可.【解答】解:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°,在△ADC和△AEB中,,∴△ADC≌△AEB(AAS);∴AD=AE,∠C=∠B,∵AB=AC,∴BD=CE,在△BOD和△COE中,,∴△BOD≌△COE(AAS);∴OB=OC,OD=OE,在Rt△ADO和Rt△AEO中,,∴Rt△ADO≌Rt△AEO(HL);∴共有3对全等直角三角形,故选:C.7.(2019秋•邳州市期中)下列条件不可以判定两个直角三角形全等的是()A.两条直角边对应相等 B.两个锐角对应相等 C.一条直角边和它所对的锐角对应相等 D.一个锐角和锐角所对的直角边对应相等【分析】根据全等三角形的判定定理:AAS、SAS、ASA、SSS及直角三角形的判定定理HL对4个选项逐个分析,然后即可得出答案.【解答】解:A、两条直角边对应相等,可利用全等三角形的判定定理SAS来判定两直角三角形全等,故本选项正确;B、两个锐角对应相等,再由两个直角三角形的两个直角相等,AAA没有边的参与,所以不能判定两个直角三角形全等;故本选项错误;C、一条直角边和它所对的锐角对应相等,可利用全等三角形的判定定理ASA来判定两个直角三角形全等;故本选项正确;D、一个锐角和锐角所对的直角边对应相等,可以利用全等三角形的判定定理ASA或AAS来判定两个直角三角形全等;故本选项正确;故选:B.8.(2019秋•兴化市期中)如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等的条件是()A.AC=A′C′,BC=B′C′ B.∠A=∠A′,AB=A′B′ C.AC=A′C′,AB=A′B′ D.∠B=∠B′,BC=B′C′【分析】根据直角三角形全等的判定方法HL即可直接得出答案.【解答】解:∵在Rt△ABC和Rt△A′B′C′中,如果AC=A′C′,AB=A′B′,那么Rt△ABC和Rt△A′B′C′一定全等,故选:C.9.(2021春•榆阳区期末)如图,∠C=∠D=90°,添加下列条件:①AC=AD;②∠ABC=∠ABD;③BC=BD,其中能判定Rt△ABC与Rt△ABD全等的条件的个数是()A.0 B.1 C.2 D.3【分析】根据直角三角形的全等的条件进行判断,即可得出结论.【解答】解:①当AC=AD时,由∠C=∠D=90°,AC=AD且AB=AB,可得Rt△ABC≌Rt△ABD(HL);②当∠ABC=∠ABD时,由∠C=∠D=90°,∠ABC=∠ABD且AB=AB,可得Rt△ABC≌Rt△ABD(AAS);③当BC=BD时,由∠C=∠D=90°,BC=BD且AB=AB,可得Rt△ABC≌Rt△ABD(HL);故选:D.10.(2017春•来宾期末)如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是()A.HL B.ASA C.SAS D.AAS【分析】由于∠BAD=∠BCD=90°,AB=CB.题中还隐含了公共边这个条件,由此就可以证明△BAD≌△BCD,全等容易看出.【解答】解:∵∠BAD=∠BCD=90°,AB=CB,DB=DB,∴△BAD≌△BCD(HL).故选:A.二.填空题(共6小题)11.(2021秋•高淳区期中)如图,在Rt△ABC和Rt△DEF中,∠C=∠F=90°,AC=DF,只需补充条件AB=DE,就可以根据“HL”得到Rt△ABC≌Rt△DEF.【分析】根据直角三角形全等的判定方法解决此题.【解答】解:补充条件:AB=DE.在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).故答案为:AB=DE.12.(2020秋•秦淮区期末)结合图,用符号语言表达定理“斜边和一条直角边分别相等的两个直角三角形全等”的推理形式:在Rt△ABC和Rt△DEF中,∠C=∠F=90°,AC=DFAB=DE∴Rt△ABC≌Rt△DEF.【分析】根据条件可知,少一组斜边,所以可添加为:AB=DE.【解答】解:∵∠C=∠F=90°,∴在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),故答案为:AB=DE.13.(2020秋•洛阳期末)如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件AB=AC.【分析】根据斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)可得需要添加条件AB=AC.【解答】解:还需添加条件AB=AC,∵AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故答案为:AB=AC.14.(2021春•普宁市期中)如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需加条件AB=AC.【分析】根据斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)可得需要添加条件AB=AC.【解答】解:还需添加条件AB=AC,∵AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故答案为:AB=AC.15.(2020秋•鼓楼区校级月考)如图,在△ABC中,AD⊥BC,垂足为D,BF=AC,CD=DF,证明图中两个直角三角形全等的依据是定理HL.【分析】根据HL可证明Rt△ACD≌Rt△BFD.【解答】∵AD⊥BC,∴∠ADC=∠BDF=90°,在Rt△ACD和Rt△BFD中,,∴Rt△ACD≌Rt△BFD(HL).故答案为:HL.16.(2019秋•高邮市月考)下列说法正确的有3个.(1)两条边对应相等的两个直角三角形全等.(2)有一锐角和斜边对应相等的两直角三角形全等.(3)一条直角边和一个锐角对应相等的两直角三角形全等.(4)面积相等的两个直角三角形全等.【分析】利用全等三角形的判定方法逐个判断即可.【解答】解:(1)当这两条边都是直角边时,结合直角相等,则可用SAS可判定两个三角形全等,当这两条边一条是斜边一条是直角边时,可用HL判定这两个直角三角形全等,故(1)正确;(2)有一锐角和斜边对应相等时,结合直角,可用AAS来判定这两个直角三角形全等,故(2)正确;(3)当一条直角边和一个锐角对应相等时,结合直角,可用AAS或ASA来证明这两个直角三角形全等,故(3)正确;(4)当两个三角形面积相等时,这两个直角三角形不一定会等,故(4)不正确;综上可知正确的有3个,故答案为:3.三.解答题(共6小题)17.(2020秋•嵩县期中)如图,已知点A,B,C,D在同一条直线上,EA⊥AB,FD⊥AD,AB=CD,若用“HL”证明Rt△AEC≌△Rt△DFB,需添加什么条件?并写出你的证明过程.【分析】先求出AC=BD,∠A=∠D=90°,再根据HL定理推出即可.【解答】条件是EC=BF,证明:∵AB=CD,∴AB+BC=CD+BC,∴AC=BD,∵EA⊥AB,FD⊥AD,∴∠A=∠D=90°,在Rt△AEC和△Rt△DFB中∴Rt△AEC≌△Rt△DFB(HL).18.(2020春•岱岳区期末)如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足,AE=CF.求证:∠ACB=90°.【分析】先利用HL定理证明△ACE和△CBF全等,再根据全等三角形对应角相等可以得到∠EAC=∠BCF,因为∠EAC+ACE=90°,所以∠ACE+∠BCF=90°,根据平角定义可得∠ACB=90°.【解答】证明:如图,在Rt△ACE和Rt△CBF中,,∴Rt△ACE≌Rt△CBF(HL),∴∠EAC=∠BCF,∵∠EAC+∠ACE=90°,∴∠ACE+∠BCF=90°,∴∠ACB=180°﹣90°=90°.19.(2019秋•铁东区期中)如图,∠A=∠D=90°,AB=DE,BF=EC.求证:Rt△ABC≌Rt△DEF.【分析】先由BF=EC得到BC=EF,再根据“HL”判定Rt△ABC≌Rt△DEF.【解答】证明:∵BF=EC,∴BF+FC=FC+EC,即BC=EF,∵∠A=∠D=90°,∴△ABC和△DEF都是直角三角形,在Rt△ABC和Rt△DEF中,∴Rt△ABC≌Rt△DEF(HL).20.(2019春•合浦县期中)如图所示,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:Rt△ABE≌Rt△CBF.【分析】在Rt△ABE和Rt△CBF中,由于AB=CB,AE=CF,利用HL可证Rt△ABE≌Rt△CBF.【解答】证明:在Rt△ABE和Rt△CBF中,∵,∴Rt△ABE≌Rt△CBF(HL).21.(2019秋•桐城市期末)如图,已知在△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论