版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第8章立体几何初步重难点归纳总结考点一体积【例1】(2023浙江丽水)已知一个圆锥的底面半径为1,其侧面积是底面积2倍,则圆锥的体积为(
)A. B. C. D.【一隅三反】1.(2023·江西)陀螺是中国民间最早的娱乐工具之一,也称陀罗.图1是一种木陀螺,可近似地看作是一个圆锥和一个圆柱的组合体,其直观图如图2所示,其中分别是上、下底面圆的圆心,且,底面圆的半径为2,则该陀螺的体积是(
)A. B. C. D.2.(2022秋·吉林)如图是一个棱长为2的正方体被过棱、的中点、,顶点和过点顶点、的两个截面截去两个角后所得的几何体,则该几何体的体积为(
)A.5 B.6 C.7 D.83.(2023·河南信阳)已知圆台上下底面半径之比为1:2,母线与底面所成的角为60°,其侧面面积为,则该圆台的体积为(
)A. B. C. D.4.(2023·浙江)(多选)圆柱的侧面展开图是长4cm,宽2cm的矩形,则这个圆柱的体积可能是(
)A. B.C. D.考点二表面积【例2】(2023辽宁)已知四棱台的上、下底面分别是边长为和的正方形,侧面均为腰长为的等腰梯形,则该四棱台的表面积为(
)A. B.C. D.【一隅三反】1.(2023江苏无锡)为了给热爱朗读的师生提供一个安静独立的环境,某学校修建了若干“朗读亭”.如图所示,该朗读亭的外形是一个正六棱柱和正六棱锥的组合体,正六棱柱两条相对侧棱所在的轴截面为正方形,若正六棱锥与六棱柱的高的比值为1∶3,则正六棱锥与正六棱柱的侧面积之比为(
)A. B. C. D.2(2022上海徐汇)若圆台的高是4,母线长为5,侧面积是,则圆台的上、下底面的面积之和是______.考点三直线、平面平行【例3】(2022山东聊城)由四棱柱截去三棱锥后得到的几何体如图所示,四边形为平行四边形,O为与的交点.(1)求证:∥平面;(2)求证:平面∥平面;(3)设平面与底面的交线为l,求证:.【一隅三反】1.(2022青海海南)如图,四边形是矩形,平面,平面.(1)证明:平面平面.(2)若平面与平面的交线为,求证:2.(2022秋·贵州)正的边长为2,是边上的高,E,F分别是和的中点(如图甲).现将沿翻成直二面角(如图乙).在图乙中:(1)求证:平面;(2)求点到平面的距离.3.(2022秋·上海)(1)叙述两个平面平行的判定定理,并证明;(2)如图,正方体中,分别为的中点,求证:平面平面.考点四直线、平面垂直【例4】(2023浙江丽水)(多选)已知正方体是中点,则(
)A.面 B.C. D.平面【一隅三反】1.(2023·海南)(多选)在长方体中,,,则下列线段与垂直的有(
)A. B. C. D.2.(2022秋·河北唐山)(多选)如图,在长方体中,M,N分别为棱,的中点,则下列判断正确的是(
).A.直线与是异面直线 B.平面C.平面 D.3.(2022秋·青海海东)如图,已知四棱锥的底面ABCD是菱形,,点E为PC的中点.(1)求证:平面BDE;(2)求证:平面平面PAC.考点五空间角【例5】(2022·浙江)(多选)《九章算术·商功》:“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳌臑.”其中,阳马是底面为矩形,且有一条侧棱与底面垂直的四棱锥.如图,在阳马中底面是边长为1的正方形,,侧棱垂直于底面,则(
)A.直线与所成的角为60°B.直线与所成的角为60°C.直线与平面所成的角为30°D.直线与平面所成的角为30°【一隅三反】1.(2022春·广西桂林·高二校考期中)如图,在四棱锥中,PD⊥底面ABCD,四边形ABCD为正方形,且,G为△ABC的重心,则PG与底面ABCD所成的角的正弦值等于(
)A. B. C. D.2.(2022上海黄浦)过正方形ABCD之顶点A作平面,若,则平面与平面所成的锐二面角的度数为________.3.(2022秋·四川达州)如图,在四棱锥中,面,,,点分别为的中点,,.(1)证明:直线平面;(2)求二面角的余弦值.考点六空间距离【例6-1】(2022秋·重庆南岸·高二重庆市第十一中学校校考期末)如图,在直三棱柱中,是等边三角形,,是棱的中点.求点到平面的距离等于_______【一隅三反】1.(2022秋·上海黄浦)的三边长分别为3、4、5,为平面外一点,它到三边的距离都等于2,则到平面的距离是________.2.(2022秋·上海黄浦)若正四棱柱的底面边长为,与底面成角,则到底面的距离为__________.3.(2023重庆巫山
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于2024年度云计算技术的数据存储与处理服务合同
- 推广劳务协议书
- 2024版工程设计居间培训合同2篇
- 离婚协议书范本2024年下载
- 链球菌课件教学课件
- 租房合同图片2篇
- 2024年度高级医疗设备工程师聘用合同3篇
- 2024年度技术开发合作与咨询费用支付合同
- 充电桩合作协议
- 年度安保服务外包合同(2024版)-门卫临时用工部分
- 初中图书目录
- 甲方与乙方的权利义务
- 流程让管理更高效(流程管理全套方案制作、设计与优化)
- 充电桩建设项目经济效益和社会效益分析报告
- 游泳运动常见损伤的预防与处理
- 中医养生食补养生的魅力
- 从《水浒传》看古代中国的民间反抗精神
- 无人机应用平台实施方案
- 中药配方颗粒报告
- 水利项目安全生产培训课件
- 提高患者功能锻炼依从性课件
评论
0/150
提交评论