2024年山西省运城市新绛县九上数学开学质量跟踪监视模拟试题【含答案】_第1页
2024年山西省运城市新绛县九上数学开学质量跟踪监视模拟试题【含答案】_第2页
2024年山西省运城市新绛县九上数学开学质量跟踪监视模拟试题【含答案】_第3页
2024年山西省运城市新绛县九上数学开学质量跟踪监视模拟试题【含答案】_第4页
2024年山西省运城市新绛县九上数学开学质量跟踪监视模拟试题【含答案】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页2024年山西省运城市新绛县九上数学开学质量跟踪监视模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)某特快列车在最近一次的铁路大提速后,时速提高了30千米小时,则该列车行驶350千米所用的时间比原来少用1小时,若该列车提速前的速度是x千米小时,下列所列方程正确的是A. B.C. D.2、(4分)如果关于的分式方程有非负整数解,且一次函数不经过四象限,则所有符合条件的的和是().A.0 B.2 C.3 D.53、(4分)已知关于x的函数y=k(x-1)和y=(k≠0),它们在同一坐标系内的图象大致是()A. B. C. D.4、(4分)有下列说法:①平行四边形既是中心对称图形,又是轴对称图形;②正方形有四条对称轴;③平行四边形相邻两个内角的和等于;④菱形的面积计算公式,除了“底×高”之外,还有“两对角线之积”;⑤矩形和菱形均是特殊的平行四边形,因此具有平行四边形的所有性质.其中正确的结论的个数有()A.1 B.2 C.3 D.45、(4分)某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件.若设这个百分数为,则可列方程()A. B.C. D.6、(4分)已知点,、,是直线上的两点,下列判断中正确的是()A. B. C.当时, D.当时,7、(4分)按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形

②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2

④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.48、(4分)如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是边AB、AD的中点,连接EF,若,,则菱形ABCD的面积为A.24 B.20 C.5 D.48二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平行四边形ABCD中,∠BAD的平分线AE交边CD于E,▱ABCD的周长是16cm,EC=2cm,则BC=______.10、(4分)如图将△ABC沿BC平移得△DCE,连AD,R是DE上的一点,且DR:RE=1:2,BR分别与AC,CD相交于点P,Q,则BP:PQ:QR=__.11、(4分)如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.12、(4分)如图,直线分别与轴、轴交于点,点是反比例函数的图象上位于直线下方的点,过点分别作轴、轴的垂线,垂足分别为点,交直线于点,若,则的值为__________.13、(4分)如图,直线y=kx+b(k≠0)与x轴交于点(﹣4,0),则关于x的方程kx+b=0的解为x=_____.三、解答题(本大题共5个小题,共48分)14、(12分)某校分别于2015年、2016年春季随机调查相同数量的学生,对学生做家务的情况进行调查(开展情况分为“基本不做”、“有时做”、“常常做”、“每天做”四种),绘制成部分统计图如下.请根据图中信息,解答下列问题:(1)a=______%,b=______%,“每天做”对应阴影的圆心角为______°;(2)请你补全条形统计图;(3)若该校2016年共有1200名学生,请你估计其中“每天做”家务的学生有多少名?15、(8分)某科技公司研发出一款多型号的智能手表,一家代理商出售该公司的A型智能手表,去年销售总额为8000元,今年A型智能手表的售价每只比去年降了60元,若售出的数量与去年相同,销售总额将比去年减少25%.(1)请问今年A型智能手表每只售价多少元?(2)今年这家代理商准备新进一批A型智能手表和B型智能手表共100只,它们的进货价与销售价格如下表,若B型智能手表进货量不超过A型智能手表数量的3倍,所进智能手表可全部售完,请你设计出进货方案,使这批智能手表获利最多,并求出最大利润是多少元?

A型智能手表

B型智能手表

进价

130元/只

150元/只

售价

今年的售价

230元/只

16、(8分)阅读下列材料:在学习“可化为一元一次方程的分式方程及其解法”的过程中,老师提出一个问题:若关于x的分式方程ax-a=1的解为正数,求a经过独立思考与分析后,小杰和小哲开始交流解题思路如下:小杰说:解这个关于x的分式方程,得x=a+1.由题意可得a+1>0,所以a>﹣1,问题解决.小哲说:你考虑的不全面,还必须保证x≠1,即a+1≠1才行.(1)请回答:的说法是正确的,并简述正确的理由是;(2)参考对上述问题的讨论,解决下面的问题:若关于x的方程mx-3-x17、(10分)某学校组织330学生集体外出活动,计划租用甲、乙两种大客车共8辆,已知甲种客车载客量为45人/辆,租金为400元/辆;乙种客车载客量为30人/辆,租金为280元/辆,设租用甲种客车x辆.(1)用含x的式子填写下表:车辆数(辆)载客量(人)租金(元)甲种客车x45x400x乙种客车___________________________(2)给出最节省费用的租车方案,并求出最低费用.18、(10分)计算能力是数学的基本能力,为了进一步了解学生的计算情况,初2020级数学老师们对某次考试中第19题计算题的得分情况进行了调查,现分别从A、B两班随机各抽取10名学生的成绩如下:A班10名学生的成绩绘成了条形统计图,如下图,B班10名学生的成绩(单位:分)分别为:9,8,9,10,9,7,9,8,10,8经过老师对所抽取学生成绩的整理与分析,得到了如下表数据:A班B班平均数8.3a中位数b9众数8或10c极差43方差1.810.81根据以上信息,解答下列问题.(1)补全条形统计图;(2)直接写出表中a,b,c的值:a=,b=,c=;(3)根据以上数据,你认为A、B两个班哪个班计算题掌握得更好?请说明理由(写出其中两条即可):.(4)若9分及9分以上为优秀,若A班共55人,则A班计算题优秀的大约有多少人?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在中,若,点是的中点,则_____.20、(4分)若,则=_____.21、(4分)如图,▱ABCD中,∠DAB=30°,AB=6,BC=2,P为边CD上的一动点,则2PB+PD的最小值等于______.22、(4分)在直角坐标系中,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2,再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3…按照这样的作法进行下去,则点A20的坐标是______.23、(4分)如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是_____.二、解答题(本大题共3个小题,共30分)24、(8分)问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.25、(10分)如图,在平面直角坐标系中,已知点,点,点在第一象限内,轴,且.(1)求直线的表达式;(2)如果四边形是等腰梯形,求点的坐标.26、(12分)如图,在ΔABC中,AB=BC,∠A=2α,点D是BC边的中点,DE⊥AB于点E,DF⊥AC于点F.(1)∠EDB=________(用含α的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转180°-2α,与AC边交于点N.根据条件补全图形,并写出DM与DN

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

根据题意可得等量关系为原来走350千米所用的时间提速后走350千米所用的时间,根据等量关系列式即可判断.【详解】解:原来走350千米所用的时间为,现在走350千米所用的时间为:,所以可列方程为:.故选:B.本题考查分式方程的实际应用,根据题意找到提速前和提速后所用时间的等量关系是解决本题的关键.2、B【解析】

依据关于x的一次函数y=x+m+2不经过第四象限,求得m的取值范围,依据关于x的分式方程有非负整数解,即可得到整数m的取值,即可得到满足条件的m的和.【详解】∵一次函数y=x+m+2不经过第四象限,

∴m+2≥0,

∴m≥-2,

∵关于x的分式方程=2有非负整数解

∴x=3-m为非负整数且3-m≠2,

又∵m≥-2,

∴m=-2,-1,0,2,3,

∴所有符合条件的m的和是2,

故选:B.考查了一次函数的图象与性质以及分式方程的解.注意根据题意求得满足条件的m的值是关键.3、A【解析】若k>0时,反比例函数图象经过二四象限;一次函数图象经过一三四象限;若k<0时,反比例函数经过一三象限;一次函数经过二三四象限;由此可得只有选项A正确,故选A.4、C【解析】

根据特殊平行四边形的性质即可判断.【详解】①平行四边形既是中心对称图形,不是轴对称图形,故错误;②正方形有四条对称轴,正确;③平行四边形相邻两个内角的和等于,正确;④菱形的面积计算公式,除了“底×高”之外,还有“两对角线之积”,故错误;⑤矩形和菱形均是特殊的平行四边形,因此具有平行四边形的所有性质,正确.故②③⑤正确,选C此题主要考查特殊平行四边形的性质,解题的关键是熟知特殊平行四边形的特点与性质.5、B【解析】

根据题意:第一年的产量+第二年的产量+第三年的产量=1且今后两年的产量都比前一年增长一个相同的百分数x.【详解】解:已设这个百分数为x.200+200(1+x)+200(1+x)2=1.故选:B.本题考查对增长率问题的掌握情况,理解题意后以三年的总产量做等量关系可列出方程.6、D【解析】

根据一次函数图象的增减性,结合一次函数图象上点的横坐标的大小关系,即可得到答案.【详解】解:一次函数上的点随的增大而减小,又点,、,是直线上的两点,若,则,故选:.本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7、C【解析】

根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.8、A【解析】

根据EF是的中位线,根据三角形中位线定理求的BD的长,然后根据菱形的面积公式求解.【详解】解:、F分别是AB,AD边上的中点,即EF是的中位线,,则.故选A.本题考查了三角形的中位线定理和菱形的面积公式,理解中位线定理求的BD的长是关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】

由平行四边形的性质和已知条件证出∠BAE=∠DEA,证出AD=DE;求出AD+DC=8,得出BC=1.【详解】∵四边形ABCD是平行四边形,

∴AB∥DC,AB=CD,AD=BC,

∴∠BAE=∠DEA,

∵平行四边形ABCD的周长是16,

∴AD+DC=8,

∵AE是∠BAD的平分线,

∴∠BAE=∠DAE,

∴∠BAE=∠AEB,

∴AD=DE,

∵EC=2,

∴AD=1,

∴BC=1,

故答案为:1.本题考查平行线的性质和角平分线的性质,解题的关键是掌握平行线的性质和角平分线的性质.10、2:1:1【解析】

根据平移的性质得到AC∥DE,BC=CE,得到△BPC∽△BRE,根据相似三角形的性质得到PC=DR,根据△PQC∽△RQD,得到PQ=QR,即可求解.【详解】由平移的性质可知,AC∥DE,BC=CE,

∴△BPC∽△BRE,

∴,

∴PC=RE,BP=PR,

∵DR:RE=1:2,

∴PC=DR,

∵AC∥DE,

∴△PQC∽△RQD,

∴=1,

∴PQ=QR,

∴BP:PQ:QR=2:1:1,

故答案为2:1:1.本题考查了相似三角形的判定和性质,平移的性质,掌握相似三角形的判定定理和性质定理是解题的关键.11、1.【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=1,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.考点:平移的性质.12、-3【解析】

首先设PN=x,PM=y,由已知条件得出EE′=PN=x,FF′=PM=y,A(-5,0),B(0,5),通过等量转换,列出关系式,求出,又因为反比例函数在第二象限,进而得解.【详解】过点F作FF′⊥OA与F′,过点E作EE′⊥OB与E′,如图所示,设PN=x,PM=y,由已知条件,得EE′=PN=x,FF′=PM=y,A(-5,0),B(0,5)∴OA=OB=5∴∠OAB=∠OBA=45°∴FF′=AF′=y,EE′=BE′=x,∴AF=,BE=又∵∴∴又∵反比例函数在第二象限,∴.此题主要考查一次函数和反比例函数的综合应用,熟练掌握,即可解题.13、-1【解析】

方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标.【详解】由图知:直线y=kx+b与x轴交于点(-1,0),即当x=-1时,y=kx+b=0;因此关于x的方程kx+b=0的解为:x=-1.故答案为:-1本题主要考查了一次函数与一次方程的关系,关键是根据方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标解答.三、解答题(本大题共5个小题,共48分)14、(1)19,20,144;(2)见解析;(3)480【解析】

(1)根据统计图可以求得而2016年抽调的学生数,从而可以求得a、b的值以及“每天做”对应的圆心角的度数;(2)根据统计图可以求得“有时做”、“常常做”的人数,从而可以将条形统计图补充完整;(3)根据统计图可以估计“每天做”家务的学生的人数.【详解】解:(1)由题意可得,2016年抽调的学生数为:80÷40%=200,则a=38÷200×100%=19%,∴b=1-19%-21%-40%=20%,“每天做”对应的圆心角为:360°×40%=144°,故答案为:19,20,144;(2)“有时做”的人数为:20%×200=40,“常常做”的人数为:200×21%=42,补全的条形统计图如下图所示,(3)由题意可得,“每天做”家务的学生有:1200×40%=480(人),即该校每天做家务的学生有480人.本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答问题.15、(1)180元;(2)方案为A型手表25只,B型手表75只,获利最多,最大利润是7250元.【解析】

(1)设今年A型智能手表每只售价x元,则去年售价每只为(x+60)元,由卖出的数量相同建立方程求出其解即可;

(2)设今年新进A型a只,则B型(100-a)只,获利y元,由条件表示出W与a之间的关系式,由a的取值范围就可以求出W的最大值.【详解】解:(1)今年A型智能手表每只售价x元,去年售价每只为(x+60)元,根据题意得,解得:x=180,经检验,x=180是原方程的根,答:今年A型智能手表每只售价180元;(2)设新进A型手表a只,全部售完利润是W元,则新进B型手表(100-a)只,根据题意得,W=(180-130)a+(230-150)(100-a)=-30a+8000,∵100-a≤3a,∴a≥25,∵-30<0,W随a的增大而减小,∴当a=25时,W增大=-30×25+8000=7250元,此时,进货方案为新进A型手表25只,新进B型手表75只,答:方案为A型手表25只,B型手表75只,获利最多,最大利润是7250元.此题考查分式方程的应用,一次函数的运用,解题关键在于由销售问题的数量关系求出一次函数的解析式是关键.16、(1)小哲;分式的分母不为0;(2)m≥﹣6且m≠﹣2.【解析】

(1)根据分式方程解为正数,且分母不为0判断即可;

(2)分式方程去分母转化为整式方程,由分式方程的解为非负数确定出m的范围即可.【详解】解:(1)小哲的说法是正确的,正确的理由是分式的分母不为0;故答案为:小哲;分式的分母不为0;(2)去分母得:m+x=2x﹣6,解得:x=m+6,由分式方程的解为非负数,得到m+6≥0,且m+6≠2,解得:m≥﹣6且m≠﹣2.本题考查的知识点是解一元一次不等式及解分式方程,解题的关键是熟练的掌握解一元一次不等式及解分式方程.17、(1)(1)8﹣x,30(8﹣x),280(8﹣x);(2)最节省费用的租车方案是甲种货车6辆,乙种货车2辆,最低费用为2960元【解析】

(1)设租用甲种客车x辆,根据题意填表格即可.(2)设租车的总费用为y元,则可列出关于x的解析式即为y=120x+2240,又因为学校组织330学生集体外出活动,则有不等式45x+30(8﹣x)≥330,求得x的取值范围,即可解答最节省费用的租车方案.【详解】解:(1)车辆数(辆)载客量(人)租金(元)甲种客车x45x400x乙种客车8﹣x30(8﹣x)280(8﹣x)(2)当租用甲种客车x辆时,设租车的总费用为y元,则:y=400x+280(8﹣x)=120x+2240,又∵45x+30(8﹣x)≥330,解得x≥6,在函数y=120x+2240中,∵120>0,∴y随x的增大而增大,∴当x=6时,y取得最小值,最小值为2960.答:最节省费用的租车方案是甲种货车6辆,乙种货车2辆,最低费用为2960元.此题考查一元一次不等式的应用,一次函数的应用,解题关键在于利用不等式求取的范围解答即可.18、(1)见解析;(2)8.7,8,9;(3)B班计算题掌握的更好,理由见详解;(4)A班计算题优秀的大约有22人.【解析】

(1)先根据A班的总人数求出成绩为10分的人数,然后即可补全条形统计图;(2)利用平均数的公式和中位数,众数的概念求解即可;(3)通过对比两班的平均数,中位数,众数,极差和方差即可得出答案;(4)用总人数55乘以优秀人数所占的百分比即可得出答案.【详解】(1)成绩为10分的人数=10﹣1﹣2﹣3﹣1=3,补全条形统计图如图所示,(2)a=(9+8+9+10+9+7+9+8+10+8)=8.7;中位数是将A班的10个成绩按照从小到大的顺序排列之后处于中间位置的数,此时第5个数和第6个数都是8,所以;众数为B班成绩中出现次数最多的数,可以看出9出现了4次,次数最多,所以c=9;(3)B班学生计算题掌握得更好,理由:B班的平均分高于A班,B班的中位数高于A班;(4)55×=22人,答:A班计算题优秀的大约有22人.本题主要考查数据的分析与整理,掌握平均数,中位数,众数的求法是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】

先依据勾股定理的逆定理,即可得到是直角三角形,再根据直角三角形斜边上中线的性质,即可得出结论.【详解】解:,,,

是直角三角形,

又点E是AB的中点,

故答案为:1.本题主要考查了勾股定理的逆定理以及直角三角形斜边上中线的性质,解题时注意运用:在直角三角形中,斜边上的中线等于斜边的一半.20、【解析】

设=m,则有x=3m,y=4m,z=5m,代入原式即可得出答案.【详解】解:设=m,∴x=3m,y=4m,z=5m,代入原式得:.故答案为.本题考查了代数式求值和等比例的性质,掌握并灵活运用等比例性质是解答本题的关键.21、【解析】

过点P作PE⊥AD交AD的延长线于点E,根据四边形ABCD是平行四边形,得到AB∥CD,推出PE=PD,由此得到当PB+PE最小时2PB+PD有最小值,此时P、B、E三点在同一条直线上,利用∠DAB=30°,∠AEP=90°,AB=6求出PB+PE的最小值=AB=3,得到2PB+PD的最小值等于6.【详解】过点P作PE⊥AD交AD的延长线于点E,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EDC=∠DAB=30°,∴PE=PD,∵2PB+PD=2(PB+PD)=2(PB+PE),∴当PB+PE最小时2PB+PD有最小值,此时P、B、E三点在同一条直线上,∵∠DAB=30°,∠AEP=90°,AB=6,∴PB+PE的最小值=AB=3,∴2PB+PD的最小值等于6,故答案为:6.此题考查平行四边形的性质,直角三角形含30°角的问题,动点问题,将线段2PB+PD转化为三点共线的形式是解题的关键.22、(219,0)【解析】

根据题意,由(1,0)和直线关系式y=x,可以求出点B1的坐标,在Rt△OA1B1中,根据勾股定理,可以求出OB1的长;再根据OB1=OA2确定A2点坐标,同理可求出A3、A4、A5……,然后再找规律,得出An的坐标,从而求得点A20的坐标.【详解】当时,,即A1B1=,在Rt△OA1B1中,由勾股定理得OB1=2,∵OB1=OA2,∴A2(2,0)同理可求:A3(4,0)、A4(8,0)、A5(16,0)……由点:A1(1,0)、A2(2,0)、A3(4,0)、A4(8,0)、A5(16,0)……即:A1(20,0)、A2(21,0)、A3(22,0)、A4(23,0)、A5(24,0)……可得An(2n-1,0)∴点A20的坐标是(219,0),故答案为:(219,0).考查一次函数图象上的点坐标特征,勾股定理,以及点的坐标的规律性.在找规律时,A点的横坐标的指数与A所处的位数容易搞错,应注意.23、x>﹣1.【解析】

根据函数y=3x+b和y=ax-3的图象交于点P(-1,-5),然后根据图象即可得到不等式

3x+b>ax-3的解集.【详解】解:∵函数y=3x+b和y=ax-3的图象交于点P(-1,-5),∴不等式

3x+b>ax-3的解集是x>-1,故答案为:x>-1.本题考查一次函数与一元一次不等式、一次函数的图象,熟练掌握是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(1)△DEF是正三角形;理由见解析;(3)c1=a1+ab+b1【解析】试题分析:(1)由正三角形的性质得∠CAB=∠ABC=∠BCA=60°,AB=BC,证出∠ABD=∠BCE,由ASA证明△ABD≌△BCE即可;、(1)由全等三角形的性质得出∠ADB=∠BEC=∠CFA,证出∠FDE=∠DEF=∠EFD,即可得出结论;(3)作AG⊥BD于G,由正三角形的性质得出∠ADG=60°,在RtΔADG中,DG=b,AG=b,在RtΔABG中,由勾股定理即可得出结论.试题解析:(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC﹣∠1,∠BCE=∠ACB﹣∠3,∠1=∠3,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论