




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙教版九年级上册数学期中考试试题一、单选题1.下列关系式中,属于二次函数的是()A.y=B.y=C.y=D.y=x3﹣2x2.下列说法正确的是()A.掷一枚质地均匀的骰子,掷得的点数为3的概率是B.一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,小军断定袋子里只有黄球C.连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同D.在同一年出生的400个同学中至少会有2个同学的生日相同3.如图所示,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,那么∠AOB'的度数是()A.15°B.30°C.45°D.60°4.已知二次函数,用配方法化为的形式,结果是()A.B.C.D.5.如图,已知是的直径,是弦,若则等于(
)A.B.C.D.6.如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=2,则⊙O的半径为A.4B.6C.8D.127.如图,正方形三个顶点的坐标依次为,,.若抛物线的图象与正方形的边有公共点,则实数a的取值范围是(
)A.B.C.D.8.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ADC的值为()A.1:16B.1:18C.1:20D.1:249.如图,菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,动点P从点B出发,沿着B→A→D在菱形ABCD的边AB,AD上运动,运动到点D停止.点P′是点P关于BD的对称点,连接PP'交BD于点M,若BM=x(0<x<8),△DPP′的面积为y,下列图象能正确反映y与x的函数关系的是()A.B.C.D.10.如图,已知在中,为直径,A为圆上一点,连结,作平分交圆于点B,连结,分别与,交于点N,M.若,则的值为(
)A.B.C.D.二、填空题11.把抛物线y=﹣3x2向左平移2个单位,再将它向下平移3个单位,得到抛物线为_________.12.已知A(-3,y1),B(-1,y2)是抛物线上y=-(x-3)2+k的两点,则y1,y2的大小关系为________.13.一个直角三角形的两条边长是方程的两个根,则此直角三角形的外接圆的直径为________.14.如图,在3×3正方形网格中,A、B在格点上,在网格的其它格点上任取一点C,能使△ABC为等腰三角形的概率是_____.15.如图,在ABC中,点D是边AC上的任意一点,点M,N分别是ABD和BCD的重心,如果AC=6,那么线段MN的长为___.16.如图,已知二次函数的图象与轴交于两点(点在点的左侧),与轴交于点为该二次函数在第一象限内的一点,连接,交于点,则的最大值为__________.三、解答题17.计算题:(1)计算:(2)解方程:18.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接写出点B关于原点对称的点B′的坐标:;(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.19.有4张看上去无差别的卡片,上面分别写着1、2、3、4.(1)随机摸取1张后,放回并混在一起,再随机抽取1张,请直接写出“第二次取出的数字小于第一次取出的数字”的概率:;(2)一次性随机抽取2张卡片,用列表法或画树状图的方法求出“两张卡片上的数都是偶数”的概率.20.如图,二次函数y2=ax2+bx+3的图象与x轴相交于点A(−3,0)、B(1,0),交y轴于点C,C、D是二次函数图象上的一对对称点,一次函数y1=mx+n的图象经过B.D两点.(1)求a、b的值及点D的坐标;(2)根据图象写出y2>y1时,x的取值范围.21.如图,已知CD是Rt△ABC斜边AB上的中线,过点D作,过点C作CE⊥CD,两线相交于点E.(1)求证:;(2)若AC=8,BC=6,求DE的长.22.如图,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于点E、D,连接ED、BE.(1)试判断DE与DC是否相等,并说明理由;(2)如果BD=2,AE=2,求⊙O的直径.23.国庆期间,某商场销售一种商品,进货价为20元/件,当售价为24元/件时,每天的销售量为200件,在销售的过程中发现:销售单价每上涨1元,每天的销量就减少10件.设销售单价为x(元/件)(x≥24),每天销售利润为y(元).(1)直接写出y与x的函数关系式为:;(2)若要使每天销售利润为1400元,求此时的销售单价;(3)若每件小商品的售价不超过36元,求该商场每天销售此商品的最大利润.24.在矩形的边上取一点,将沿翻折,使点恰好落在边上点处.(1)如图1,若,求的度数;(2)如图2,当,且时,求的长;(3)如图3,延长,与的角平分线交于点,交于点,当时,求出的值.参考答案1.A【解析】【分析】二次函数为形如的形式;对比四个选项,进而得到结果.【详解】解:A符合二次函数的形式,故符合题意;B中等式的右边不是整式,故不是二次函数,故不符合题意;C中等式的右边分母中含有,但是分式,不是整式,故不是二次函数,故不符合题意;D中最高次幂为三,是三次函数,故不是二次函数,故不符合题意;故选A.【点睛】本题考察了二次函数的概念.解题的关键与难点在于理清二次函数的概念.2.D【解析】【分析】A中掷一枚质地均匀的骰子,出现点数为的结果相等,故可得出掷得的点数为的概率,进而判断选项的正误;B中摸球为随机事件,无法通过小量的重复试验反映必然事件的发生与否,进而判断选项的正误;C中可用列举法求概率,进而判断选项的正误;D中假设人中前个人生日均不相同,而剩余的个人的生日会有与个人的生日有相同的情况,进而判断选项的正误.【详解】解:A掷一枚质地均匀的骰子,掷得的点数为的概率是,此选项错误,不符合题意;B一个袋子里有个球从中随机摸出一个球再放回,小军摸了次,每次摸到的球的颜色都是黄色,这种情况是偶然的,故小军断定袋子里只有黄球是错误的,此选项不符合题意;C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是,此选项错误,不符合题意;D在同一年出生的个同学中至少会有个同学的生日相同是正确的,此选项符合题意;故选D.【点睛】本题考察了概率.解题的关键与难点在于了解概率概念与求解.3.B【解析】【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【详解】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA−∠A′OB′=45°−15°=30°,故选:B.【点睛】此题主要考查了旋转的性质,根据旋转的性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键.4.A【解析】【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】解:y=-x2+2x-3=-(x2-2x+1)+1-3=-(x-1)2-2,故选:A.【点睛】本题考查了二次函数解析式的三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x-h)2+k;(3)交点式(与x轴):y=a(x-x1)(x-x2).5.A【解析】【分析】先由圆周角定理得到∠DAB=∠BCD=36°,然后根据是的直径确定∠ADB=90°,最后根据直角三角形两锐角互余即可解答.【详解】解:∵是弦,若∴∠DAB=∠BCD=36°∵是的直径∴∠ADB=90°∴∠ABD=90°-∠DAB=54°.故选:A.【点睛】本题考查了圆周角定理和直角三角形的性质,灵活利用圆周角定理是解答本题的关键.6.A【解析】【详解】∵圆心角∠AOC与圆周角∠B所对的弧都为,且∠B=60°,∴∠AOC=2∠B=120°(在同圆或等圆中,同弧所对圆周角是圆心角的一半).又OA=OC,∴∠OAC=∠OCA=30°(等边对等角和三角形内角和定理).∵OP⊥AC,∴∠AOP=90°(垂直定义).在Rt△AOP中,OP=2,∠OAC=30°,∴OA=2OP=4(直角三角形中,30度角所对的边是斜边的一半).∴⊙O的半径4.故选A.7.A【解析】【分析】求出抛物线经过两个特殊点时的a的值,再根据∣a∣越大,抛物线的开口越小即可解决问题.【详解】解:当抛物线经过(1,3)时,由3=a×12得:a=3,当抛物线经过(3,1)时,由1=a×32得:a=,观察图象可知:,故选:A.【点睛】本题考查二次函数图象与系数的关系、二次函数图象上的点的坐标特征等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.C【解析】【分析】由S△BDE:S△CDE=1:4,得到BE:CE=1:4,于是得到BE:BC=1:5,根据DE∥AC,推出△BDE∽△BAC,根据相似三角形的性质即可得到结论.【详解】解:∵S△BDE:S△CDE=1:4,∴BE:CE=1:4,∴BE:BC=1:5,∵DE∥AC,∴△BDE∽△BAC,∴S△BDE:S△BAC=()2=.∴S△BDE:S△ADC=1:(25-1-4)=1:20.故选:C.9.D【解析】由菱形的性质得出AB=BC=CD=DA,OA=AC=3,OB=BD=4,AC⊥BD,分两种情况:①当BM≤4时,先证明△P′BP∽△CBA,得出比例式,求出PP′,得出△DPP′的面积y是关于x的二次函数,即可得出图象的情形;②当BM≥4时,y与x之间的函数图象的形状与①中的相同;即可得出结论.【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,OA=AC=3,OB=BD=4,AC⊥BD,①当BM≤4时,∵点P′与点P关于BD对称,∴P′P⊥BD,∴P′P∥AC,∴△P′BP∽△CBA,∴,即,∴PP′=,∵DM=8-x,∴△DPP′的面积y=PP′•DM=×x(8-x)=-x2+6x;∴y与x之间的函数图象是抛物线,开口向下,过(0,0)和(4,12);②当BM≥4时,如图:同理△P′DP∽△CDA,∴,即,∴PP′=,∴△DPP′的面积y=PP′•DM=×(8-x)2=(8-x)2;∴y与x之间的函数图象是抛物线,开口向上,过(4,12)和(8,0);综上所述:y与x之间的函数图象大致为:故选:D.【点睛】本题考查了动点问题的函数图象、菱形的性质、相似三角形的判定与性质、三角形面积的计算以及二次函数的运用;熟练掌握菱形的性质,根据题意得出二次函数解析式是解决问题的关键.10.D【解析】【分析】由垂径定理可得OB⊥AC,,则∠ADM=∠BDC,易证△OMD∽△AND,则∠AOD=90°,且DM:DN=OD:AD=1:.【详解】解:∵OB平分∠AOC,∴∠AOB=∠COB,∴,∴∠ADB=∠BDC,∵AM=AN,∴∠ANM=∠AMN,又∵∠AMN=∠OMD,∴∠ANM=∠OMD,∴△OMD∽△AND,∴,∠MOD=∠NAD,∵CD是直径,∴∠NAD=90°,∴∠MOD=90°,∵OA=OD,∴∠OAD=45°,∴AD=OD,∴.故选:D.【点睛】本题主要考查圆周角定理,相似三角形的性质与判定,熟记圆内相关定理是解题基础.11.y=﹣3(x+2)2﹣3【解析】【分析】根据抛物线平移的规律“左加右减,上加下减”即可求得答案.【详解】解:把抛物线y=﹣3x2向左平移2个单位,得到的抛物线为y=﹣3(x+2)2,再将抛物线为y=﹣3(x+2)2向下平移3个单位,得到抛物线为y=﹣3(x+2)2﹣3,故答案为:y=﹣3(x+2)2﹣3.【点睛】本题考查二次函数图象与几何变换、解题的关键是熟练掌握抛物线平移的规律“左加右减,上加下减”.12.【解析】【分析】根据抛物线y=-(x-3)2+k开口向下,对称轴为直线,由A(-3,y1),B(-1,y2)在对称轴左侧,y随x的增大而增大,可得最终结果.【详解】抛物线y=-(x-3)2+k开口向下,对称轴为直线,,,故答案为:.【点睛】本题主要考查二次函数的性质,属于基础题,熟练掌握二次函数的增减性是解题关键.13.4或5##5或4【解析】【分析】解方程得到x=3或4,本题应分两种情况进行讨论,当4是直角边时,根据勾股定理得到斜边是5,这个直角三角形外接圆的直径是5,当4是斜边时,直角三角形外接圆直径是4.【详解】解:,解得x=3或4;①当4是直角边时,斜边长,所以直角三角形外接圆直径是5;②当4是斜边时,这个直角三角形外接圆的直径是4.故答案为:4或5.【点睛】此题主要考查直角三角形外切圆半径,涉及到一元二次方程的解法以及勾股定理的综合应用,难度不大.14.【解析】【分析】分三种情况:①点A为顶点;②点B为顶点;③点C为顶点;得到能使△ABC为等腰三角形的点C的个数,再根据概率公式计算即可求解.【详解】如图,∵AB=,∴①若AB=AC,符合要求的有3个点;②若AB=BC,符合要求的有2个点;③若AC=BC,不存在这样格点.∴这样的C点有5个.∴能使△ABC为等腰三角形的概率是.故答案为:.【点睛】此题考查等腰三角形的判定和概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.2【解析】【分析】连接BM并延长交AC于E,连接BN并延长交AC于F,根据三角形的重心是中线的交点可得ED=AD,DF=CD,然后求出EF的长,再根据三角形的重心到顶点的距离等于到对边中点的距离的2倍可得BM=2ME,BN=2NF,再根据相似三角形对应边成比例列出求解即可.【详解】解:连接BM并延长交AC于E,连接BN并延长交AC于F,∵点M、N分别是△ABD和△ACD的重心,∴ED=AD,DF=CD,BM=2ME,BN=2NF,∵BC=6,∴EF=DE+DF=(AD+CD)=BC=×6=3,∵==,∠EBF=∠MBN,∴△BEF∽△BMN,∴=,即=,∴MN=2.故答案为:2.【点睛】本题考查了三角形重心,解题关键是明确三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.16.【解析】【分析】由抛物线的解析式易求出点A、B、C的坐标,然后利用待定系数法求出直线BC的解析式,过点P作PQ∥x轴交直线BC于点Q,则△PQK∽△ABK,可得,而AB易求,这样将求的最大值转化为求PQ的最大值,可设点P的横坐标为m,注意到P、Q的纵坐标相等,则可用含m的代数式表示出点Q的横坐标,于是PQ可用含m的代数式表示,然后利用二次函数的性质即可求解.【详解】解:对二次函数,令x=0,则y=3,令y=0,则,解得:,∴C(0,3),A(-1,0),B(4,0),设直线BC的解析式为:,把B、C两点代入得:,解得:,∴直线BC的解析式为:,过点P作PQ∥x轴交直线BC于点Q,如图,则△PQK∽△ABK,∴,设P(m,),∵P、Q的纵坐标相等,∴当时,,解得:,∴,又∵AB=5,∴.∴当m=2时,的最大值为.故答案为:.【点睛】本题考查了二次函数与坐标轴的交点、二次函数的性质和二次函数图象上点的坐标特征、待定系数法求函数的解析式、相似三角形的判定和性质等知识,难度较大,属于填空题中的压轴题,解题的关键是利用相似三角形的判定和性质将所求的最大值转化为求PQ的最大值、熟练掌握二次函数的性质.17.(1);(2)或.【解析】【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂的意义计算,第三项利用负整数指数幂法则计算,最后进行加减运算即可得到答案;(2)方程变形后,利用平方根定义开方即可求解.【详解】解:;或或.【点睛】此题考查了实数的运算,熟练掌握运算法则是解答此题的关键.18.(1)(4,﹣1);(2)见解析;(3)见解析.【解析】【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.【详解】(1)点B关于原点对称的点B′的坐标为(4,﹣1),故答案为:(4,﹣1);(2)如图所示,△A1B1C1即为所求.(3)如图所示,△A2B2C2即为所求.【点睛】本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.19.(1)(2)【解析】【分析】(1)列表展示所有16种等可能的结果数,再找出第二次取出的数字小于第一次取出的数字的结果数,然后根据概率公式求解;(2)列表展示所有12种等可能的结果数,再找出两张卡片上的数都是偶数的结果数,然后根据概率公式求解.【详解】解:(1)列表如下:12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)由表知,共有16种等可能的结果数,其中第二次取出的数字小于第一次取出的数字的有6种结果,所以第二次取出的数字小于第一次取出的数字的概率为;(2)列表如下:12341(2,1)(3,1)(4,1)2(1,2)(3,2)(4,2)3(1,3)(2,3)(4,3)4(1,4)(2,4)(3,4)由表知,共有12种等可能的结果数,其中两张卡片上的数都是偶数的有2种结果,所以两张卡片上的数都是偶数的概率为.【点睛】此题考查的是用列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时要注意此题是放回实验还是不放回实验,用到的知识点为:概率=所求情况数与总情况数之比.20.(1)a=-1,b=-2,D(-2,3);(2)−2<x<0【解析】【分析】(1)由于已知抛物线与x轴的交点坐标,则设交点式y=a(x+3)(x-1)=,则-3a=3,解得a=-1,所以b=-2,抛物线的对称轴为直线x=-1,再求出C点坐标为(0,3),然后根据对称的性质确定D点坐标为(-2,3);(2)观察函数图象得到当-2<x<0时,抛物线都在直线y=mx+n的上方,即y2>y1.【详解】(1)设抛物线解析式为y=a(x+3)(x−1)=,则−3a=3,解得a=−1,所以抛物线解析式为y=;所以b=−2,抛物线的对称轴为直线x=−1,当x=0时,,则C点坐标为(0,3),由于C.D是二次函数图象上的一对对称点,∴D点坐标为(−2,3);(2)观察函数图象得到当-2<x<0时,抛物线都在直线y=mx+n的上方,即y2>y1.当−2<x<0时,.【点睛】此题考查待定系数法求二次函数解析式、二次函数的图象,解题关键在于结合二次函数图象解决问题.21.(1)见解析;(2)【解析】【分析】(1)先证出∠DCE=∠ACB,∠CDE=∠ACD,再利用CD是斜边AB中线,可得CD=AD,证得∠A=∠ACD,从而∠CDE=∠CAD,进而可以证明;(2)先利用勾股定理求得AB=10,再利用直角三角形斜边上的中线等于斜边的一半,求得CD=5,再利用相似三角形的对应边成比例得AB∶DE=AC∶CD,即可求得答案.【详解】解(1)由题意:∵CE⊥CD,∴,又∵,∴∠CDE=∠ACD,∵在中,CD是AB边上的中线,∴CD=AD,∴∠ACD=∠CAD,∴∠CDE=∠CAD,∴.(2)∵AC=8,BC=6,∴利用勾股定理得:∵在中,CD是AB边上的中线,∴CD=5,∵∴AB∶DE=AC∶CD,即10∶DE=8∶5,∴DE=.【点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45286-2025信息技术手持式移动设备增强现实系统技术规范
- 2025年莱芜下载货运从业资格证模拟考试系统试题
- 单位空调安装合同范本
- 刑法中劳务合同范本
- 刊物设计制作合同范本
- 写好运输合同范本
- 农户贷款合伙经营合同范本
- 企业重组收购合同范本
- 供热设备买卖合同范本
- 代理银行开户合同范本
- 2025年01月吉林白山市长白朝鲜族自治县事业单位公开招聘工作人员(含专项)和边境村稳边固边工作专干84人(1号)笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 课题申报参考:产教融合背景下护理专业技能人才“岗课赛证”融通路径研究
- 2025年四川省阿坝州小金县面向县外考调事业单位人员13人历年高频重点模拟试卷提升(共500题附带答案详解)
- 北京市东城区2024-2025学年高三(上)期末思想政治试卷(含答案)
- 1.2 男生女生 课件 -2024-2025学年统编版道德与法治七年级下册
- 【化学】常见的盐(第2课时)-2024-2025学年九年级化学下册(人教版2024)
- 2025年南通科技职业学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 真需求-打开商业世界的万能钥匙
- 《矿山隐蔽致灾因素普查规范》解读培训
- 第1课 立足时代 志存高远 (课件+视频)- 【中职专用】高一思想政治《心理健康与职业生涯》(高教版2023·基础模块)
- 19S406建筑排水管道安装-塑料管道
评论
0/150
提交评论