2024-2025学年浙江省杭州市富阳区城区联考九上数学开学调研模拟试题【含答案】_第1页
2024-2025学年浙江省杭州市富阳区城区联考九上数学开学调研模拟试题【含答案】_第2页
2024-2025学年浙江省杭州市富阳区城区联考九上数学开学调研模拟试题【含答案】_第3页
2024-2025学年浙江省杭州市富阳区城区联考九上数学开学调研模拟试题【含答案】_第4页
2024-2025学年浙江省杭州市富阳区城区联考九上数学开学调研模拟试题【含答案】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024-2025学年浙江省杭州市富阳区城区联考九上数学开学调研模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,已知一次函数的图象与轴交于点,则根据图象可得不等式的解集是()A. B. C. D.2、(4分)下列说法正确的是()A.全等的两个图形成中心对称B.成中心对称的两个图形必须能完全重合C.旋转后能重合的两个图形成中心对称D.成中心对称的两个图形不一定全等3、(4分)用反证法证明“”,应假设()A. B. C. D.4、(4分)将直线y=kx-1向上平移2个单位长度,可得直线的解析式为()A.y=kx+1B.y=kx-3C.y=kx+3D.y=kx-15、(4分)下列函数中是一次函数的是A. B.C. D.6、(4分)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿AB向B点运动,设E点的运动时间为t秒,连接DE,当以B、D、E为顶点的三角形与△A.2或3.5 B.2或3.2 C.2或3.4 D.3.2或3.47、(4分)已知多项式x2+bx+c分解因式为(x+3)(x﹣1),则b、c的值为()A.b=3,c=﹣2 B.b=﹣2,c=3 C.b=2,c=﹣3 D.b=﹣3,c=﹣28、(4分)如果下列各组数是三角形的三边,则能组成直角三角形的是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)反比例函数y=kx(k>0)在第一象限内的图象如图,点M是图象上一点,MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是________10、(4分)请观察一列分式:﹣,﹣,…则第11个分式为_____.11、(4分)如图,点A,B在函数的图象上,点A、B的横坐标分别为、3,则△AOB的面积是_____.12、(4分)化简:=_____.13、(4分)有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数字不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使关于的分式方程有正实数解的概率为________.三、解答题(本大题共5个小题,共48分)14、(12分)矩形纸片ABCD,AB=4,BC=12,E、F分别是AD、BC边上的点,ED=1.将矩形纸片沿EF折叠,使点C落在AD边上的点G处,点D落在点H处.(1)矩形纸片ABCD的面积为(2)如图1,连结EC,四边形CEGF是什么特殊四边形,为什么?(1)M,N是AB边上的两个动点,且不与点A,B重合,MN=1,求四边形EFMN周长的最小值.(计算结果保留根号)15、(8分)不解方程组,求的值16、(8分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.17、(10分)如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为27818、(10分)如图如图1,四边形ABCD和四边形BCMD都是菱形,(1)求证:∠M=60°(2)如图2,点E在边AD上,点F在边CM上,连接EF交CD于点H,若AE=MF,求证:EH=HF;(3)如图3,在第(2)小题的条件下,连接BH,若EF⊥CM,AB=3,求BH的长B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则Sn=_____.(用含n的式子表示)20、(4分)平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=_____cm.21、(4分)若干桶方便面摆放在桌子上.实物图片左边所给的是它的三视图.则这一堆方便面共有桶.22、(4分)线段AB的两端点的坐标为A(﹣1,0),B(0,﹣2).现请你在坐标轴上找一点P,使得以P、A、B为顶点的三角形是直角三角形,则满足条件的P点的坐标是______.23、(4分)如图,在平行四边形ABCD中,AC和BD交于点O,过点O的直线分别与AB,DC交于点E,F,若△AOD的面积为3,则四边形BCFE的面积等于_____.二、解答题(本大题共3个小题,共30分)24、(8分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.25、(10分)如图,现有一张边长为8的正方形纸片,点为边上的一点(不与点、点重合),将正方形纸片折叠,使点落在处,点落在处,交于,折痕为,连结、.(1)求证:;(2)求证:;(3)当时,求的长.26、(12分)学校新到一批实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟完成;(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

,即,从图象可以看出,当时,,即可求解.【详解】解:,即,从图象可以看出,当时,,故选:.本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出的值,是解答本题的关键.2、B【解析】

根据中心对称图形的概念,即可求解.【详解】解:A、成中心对称的两个图形全等,但全等的两个图形不一定成中心对称,故错误;B、成中心对称的两个图形必须能完全重合,正确;C、旋转180°能重合的两个图形成中心对称,故错误;D、成中心对称的两个图形一定全等,故错误.故选:B.本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3、D【解析】

根据命题:“a>0”的反面是:“a≤0”,可得假设内容.【详解】解:由于命题:“a>0”的反面是:“a≤0”,故用反证法证明:“a>0”,应假设“a≤0”,故选:D.此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.4、A【解析】分析:根据上下平移时,b的值上加下减的规律解答即可.详解:由题意得,∵将直线y=kx-1向上平移2个单位长度,∴所得直线的解析式为:y=kx-1+2=kx+1.故选A.点睛:本题考查了一次函数图象的平移,一次函数图象的平移规律是:①y=kx+b向左平移m个单位,是y=k(x+m)+b,向右平移m个单位是y=k(x-m)+b,即左右平移时,自变量x左加右减;②y=kx+b向上平移n个单位,是y=kx+b+n,向下平移n个单位是y=kx+b-n,即上下平移时,b的值上加下减.5、D【解析】

根据形如k、b是常数的函数是一次函数即可解答.【详解】选项A是反比例函数;选项B是二次函数;选项C是二次函数;选项D是一次函数.故选D.本题主要考查了一次函数定义,关键是掌握一次函数解析式y=kx+b的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.6、A【解析】

求出AB=2BC=4cm,分两种情况:①当∠EDB=∠ACB=90°时,DE∥AC,△EBD∽△ABC,得出AE=BE=12AB=2cm,即可得出t=2s;②当∠DEB=∠ACB=90°时,证出△DBE∽△ABC,得出∠BDE=∠A=30°,因此BE=12BD=12cm,得出AE=3.5cm【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∴AB=2BC=4cm,分两种情况:①当∠EDB=∠ACB=90°时,DE∥AC,所以△EBD∽△ABC,E为AB的中点,AE=BE=12AB=2cm∴t=2s;②当∠DEB=∠ACB=90°时,∵∠B=∠B,∴△DBE∽△ABC,∴∠BDE=∠A=30°,∵D为BC的中点,∴BD=12BC=1cm∴BE=12BD=0.5cm∴AE=3.5cm,∴t=3.5s;综上所述,当以B、D、E为顶点的三角形与△ABC相似时,t的值为2或3.5,故选:A.本题考查了相似三角形的判定、平行线的性质、含30°角的直角三角形的性质等知识;熟记相似三角形的判定方法是解决问题的关键,注意分类讨论.7、C【解析】

因式分解结果利用多项式乘以多项式法则计算,再利用多项式相等的条件求出b与c的值即可.【详解】解:根据题意得:x2+bx+c=(x+3)(x-1)=x2+2x-3,则b=2,c=﹣3,故选:C.本题考查多项式与多项式相乘得到的结果相等,则要求等号两边同类项的系数要相同,熟练掌握多项式的乘法法则是解决本题的关键.8、A【解析】

根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】A.∵1+=2,∴此三角形是直角三角形,正确;B.∵1+3≠4,∴此三角形不是直角三角形,不符合题意;C.∵2+3≠6,∴此三角形不是直角三角形,不合题意;D.∵4+5≠6,∴此三角形不是直角三角形,不合题意.故选:A.此题考查勾股定理的逆定理,解题关键在于掌握计算公式.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】

过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=12【详解】解:由题意得:S△MOP=12又因为函数图象在一象限,所以k=1.故答案为:1.主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为12|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解10、【解析】

分母中y的次数是分式的序次的2倍加1,分子中x的次数与序次一致,分式的序次为奇数时,分式的符合为负,分式的序次为偶数时,分式的符合为正,由此即可解决问题.【详解】根据规律可知:则第11个分式为﹣.故答案为﹣.本题考查了分式的定义:叫分式,其中A、B都是整式,并且B中含有字母.也考查了从特殊到一般的规律的探究.11、1【解析】

过A作AC⊥x轴于C,过B作BD⊥x轴于D,由点A,B在函数的图象上,得到S△AOC=S△BOD=,求得A(m,),B(3m,),于是得到结论.【详解】解:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A,B在函数的图象上,∴S△AOC=S△BOD=,∵点A、B的横坐标分别为m、3m,∴A(m,),B(3m,),∴S△AOB=S四边形ACDB=(+)×(3m-m)=1,故答案为1.本题考查了反比例函数系数k的几何意义,证得S△AOB=S四边形ACDB是解题的关键.12、1【解析】

根据二次根式的乘法,化简即可得解.【详解】解:==1.故答案为:1.本题主要考查二次根式的乘法法则,熟悉掌握法则是关键.13、.【解析】

解分式方程,得到解,并让解大于零,然后根据概率公式求解.【详解】解:解分式方程得:且x≠2令>0且不等于2,则符合题意得卡片上的数字有:-2,0,4;∴方程的解为正实数的概率为:,故答案为.本题考查了概率公式和分式方程的求解,其关键是确定满足题意卡片上的数字..三、解答题(本大题共5个小题,共48分)14、(1)2;(2)四边形CEGF是菱形,理由见详解;(1)四边形EFMN周长的最小值为.【解析】

(1)矩形面积=长×宽,即可得到答案,(2)利用对角线互相垂直平分的四边形是菱形进行证明,先证对角线相互垂直,再证对角线互相平分.(1)明确何时四边形的周长最小,利用对称、勾股定理、三角形相似,分别求出各条边长即可.【详解】解:(1)S矩形ABCD=AB•BC=12×4=2,故答案为:2.(2)四边形CEGF是菱形,证明:连接CG交EF于点O,由折叠得:EF⊥CG,GO=CO,∵ABCD是矩形,∴AD∥BC,∴∠OGE=∠OCF,∠GEO=∠CFO∴△GOE≌△COF(AAS),∴OE=OF∴四边形CEGF是菱形.因此,四边形CEGF是菱形.(1)作F点关于点B的对称点F1,则NF1=NF,当NF1∥EM时,四边形EFMN周长最小,设EC=x,由(2)得:GE=GF=FC=x,在Rt△CDE中,∵ED2+DC2=EC2,∴12+42=EC2,∴EC=5=GE=FC=GF,在Rt△GCD中,,∴OC=GO=,在Rt△COE中,,∴EF=2OE=,当NF1∥EM时,易证△EAM∽△F1BN,∴,设AM=y,则BN=4-1-y=1-y,∴,解得:,此时,AM=,BN=,由勾股定理得:,,∴四边形EFMN的周长为:故四边形EFMN周长的最小值为:.考查矩形的性质、菱形的判定和性质、对称及三角形相似的性质和勾股定理等知识,综合性很强,利用的知识较多,是一道较难得题目.15、6.【解析】

应把所给式子进行因式分解,整理为与所给等式相关的式子,代入求值即可.【详解】原式=∴原式=本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.16、(1)证明见解析;(2)1.【解析】分析:(1)只要证明三个角是直角即可解决问题;(2)作OF⊥BC于F.求出EC、OF的长即可;详解:(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.点睛:本题考查矩形的判定和性质、角平分线的定义、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题17、(1)k=34;(2)△OPA的面积S=94x+18(﹣8<x<0);(3)点P坐标为(-132,98)或(-19【解析】

(1)将点E坐标(﹣8,0)代入直线y=kx+6就可以求出k值,从而求出直线的解析式;(2)由点A的坐标为(﹣6,0)可以求出OA=6,求△OPA的面积时,可看作以OA为底边,高是P点的纵坐标的绝对值.再根据三角形的面积公式就可以表示出△OPA.从而求出其关系式;根据P点的移动范围就可以求出x的取值范围.(3)分点P在x轴上方与下方两种情况分别求解即可得.【详解】(1)∵直线y=kx+6过点E(﹣8,0),∴0=﹣8k+6,k=34(2)∵点A的坐标为(﹣6,0),∴OA=6,∵点P(x,y)是第二象限内的直线上的一个动点,∴△OPA的面积S=12×6×(34x+6)=(3)设点P的坐标为(m,n),则有S△AOP=12即62解得:n=±98当n=98时,98=34x+6,解得此时点P在x轴上方,其坐标为(-132,当n=-98时,-98=34x+6,解得此时点P在x轴下方,其坐标为(-192,综上,点P坐标为:(-132,98)或(-本题考查了待定系数法、三角形的面积、点坐标的求法,熟练掌握待定系数法、正确找出各量间的关系列出函数解析式,分情况进行讨论是解题的关键.18、(1)证明见解析(2)证明见解析(3)7【解析】

(1)利用菱形的四条边相等,可证CD=DM=CM=AD,就可得到△CDM是等边三角形,再利用等边三角形的三个角都是60°,就可求出∠M的度数;(2)过点E作EG∥CM交CD的延长线于点G,可得到∠G=∠HCF,先证明△EDG是等边三角形,结合已知条件证明EG=CF,利用AAS证明△EGH≌△FCH,再根据全等三角形的对应边相等,可证得结论;(3)设BD,EF交于点N,根据前面的证明可知BD=CD=AB=3,∠M=∠CDM=60°,DE=CF,再利用垂直的定义及三角形内角和定理可求出∠HED,∠EHD的度数,从而利用等腰三角形的判定和性质,可证得ED=DH=CF,可推出CD=3DH,就可求出DH的长,然后利用解直角三角形分别求出BN,NH的长,再利用勾股定理就可求出BH的长.【详解】(1)证明:∵四边形ABCD和四边形BCMD都是菱形,∴BC=CD=AD,BC=DM=CM∴CD=DM=CM=AD,∴△CDM是等边三角形,∴∠M=60°。(2)解:如图2,过点E作EG∥CM交CD的延长线于点G,∴∠G=∠HCF=60°,∠GED=∠M=60°,∴∠G=∠GED=∠EDG=60°,∴△EDG是等边三角形∴EG=DE;∵AD=CM,AE=MF,∴DE=CF,∴EG=CF;在△EGH和△FCH中,∠G=∠HCF∴△EGH≌△FCH(AAS)∴EH=FH.(3)解:如图3,设BD,EF交于点N,由(1)(2)的证明过程可知BD=CD=AB=3,∠M=∠CDM=60°,DE=CF,∵EF⊥CM,∴∠EFM=90°,∴∠HED=90°-60°=30°,∠CDM=∠HED+∠EHD=60°∴∠EHD=60°-30°=30°=∠HED=∠CHF∴ED=DH=CF,在R△CHF中,∠CHF=30°∴CH=2CH=2DH,∴CD=CH+DH=3DH=3解之:DH=CF=1∵菱形CBDM,EF⊥CM∴BD∥CM∴EF⊥BD;∴∠DNH=∠BNH=90°,在Rt△DHN中,∠DHN=30°,DH=1∴DN=DHsin∠30°=12,NH=DHcos30°=32∴BN=BD-DN=3-12=5在Rt△BHN中,BH=BN本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、相似三角形的判定与性质、平行线的性质、勾股定理、含30°角的直角三角形的性质等知识;本题综合性强,熟练掌握等边三角形的判定与性质是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、:()n.【解析】

由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出S1,同理求出S2,依此类推,得到Sn.解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴S1=××()2=()1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴S2=××()2=()2;依此类推,Sn=()n.故答案为()n.“点睛”此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.20、1.【解析】

根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△BOC的周长比△AOB的周长大2cm,则BC比AB长7cm,所以根据周长的值可以求出AB,进而求出CD的长.【详解】解:∵平行四边形的周长为20cm,∴AB+BC=10cm;又△BOC的周长比△AOB的周长大2cm,∴BC﹣AB=2cm,解得:AB=1cm,BC=6cm.∵AB=CD,∴CD=1cm故答案为1.21、1【解析】从俯视图中可以看出最底层方便面的个数及摆放的形状,从主视图可以看出每一层方便面的层数和个数,从左视图可看出每一行方便面的层数和个数,从而算出总的个数.所以三摞方便面是桶数之和为:3+1+2=1.22、(0,0)、(0,)、(4,0)【解析】

由平面直角坐标系的特点可知当P和O重合时三角形PAB是直角三角形,由射影定理逆定理可知当AO2=BO•P′O时,三角形PAB是直角三角形或BO2=AO•OP″时三角形PAB也是直角三角形.【详解】如图:①由平面直角坐标系的特点:AO⊥BO,所以当P和O重合时三角形PAB是直角三角形,所以P的坐标为:(0,0);②由射影定理逆定理可知当AO2=BO•P′O时三角形PAB是直角三角形,即:12=2•OP′,解得OP′=;故P点的坐标是(0,);同理当BO2=AO•OP″时三角形PAB也是直角三角形,即22=1OP″解得OP″=4,故P点的坐标是(4,0).故答案为(0,0)、(0,)、(4,0)主要考查了坐标与图形的性质和直角三角形的判定.要把所有的情况都考虑进去,不要漏掉某种情况.23、6【解析】

根据平行四边形的性质得到OD=OB,得到△AOB的面积=△AOD的面积,求出平行四边形ABCD的面积,根据中心对称图形的性质计算.【详解】解:∵四边形ABCD是平行四边形,∴OD=OB,∴△AOB的面积=△AOD的面积=3,∴△ABD的面积为6,∴平行四边形ABCD的面积为12,∵平行四边形是中心对称图形,∴四边形BCFE的面积=×平行四边形ABCD的面积=×12=6,故答案为:6.本题主要考查了全等三角形的判定,平行四边形的性质,掌握全等三角形的判定,平行四边形的性质是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)y1=36x;(2)当0≤x≤10时,y2=42x,当x>10时,y2=33.6x+84;(3)若购买35个书包,选A,B品牌都一样,若购买35个以上书包,选B品牌划算,若购买书包个数超过10个但小于35个,选A品牌划算【解析】

(1)直接利用购买A品牌书包按原价的九折销售,进而得出函数关系式;(2)分别利用当0≤x≤10时,当x>10时,分别得出函数关系式;(3)分别利用①当y1=y2时,②当y1>y2时,③当y1<y2时,求出答案.【详解】解:(1)由题意可得:y1=36x;(2)当0≤x≤10时,y2=42x;当x>10时,y2=42×10+42×0.8(x-10)=33.6x+84;(3)若x>10,则y2=33.6x+84,①当y1=y2时,36x=33.6x+84,解得:x=35;②当y1>y2时,36x>33.6x+84,解得:x>35;③当y1<y2时,36x<33.6x+84,解得:x<35;∵x>10,∴10<x<35,答:若购买35个书包,选A,B品牌都一样;若购买35个以上书包,选B品牌划算;若购买书包个数超过10个但小于35个,选A品牌划算.此题主要考查了一次函数的应用,正确得出函数关系式进而分类讨论是解题关键.25、(1)证明见解析;(2)证明见解析;(3)PH=.【解析】

(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论