美联储-美国高增长企业:主要趋势和新数据机遇 High-Growth Firms in the United States Key Trends and New Data Opportunities_第1页
美联储-美国高增长企业:主要趋势和新数据机遇 High-Growth Firms in the United States Key Trends and New Data Opportunities_第2页
美联储-美国高增长企业:主要趋势和新数据机遇 High-Growth Firms in the United States Key Trends and New Data Opportunities_第3页
美联储-美国高增长企业:主要趋势和新数据机遇 High-Growth Firms in the United States Key Trends and New Data Opportunities_第4页
美联储-美国高增长企业:主要趋势和新数据机遇 High-Growth Firms in the United States Key Trends and New Data Opportunities_第5页
已阅读5页,还剩54页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

FinanceandEconomicsDiscussionSeries

FederalReserveBoard,Washington,D.C.

ISSN1936-2854(Print)

ISSN2767-3898(Online)

High-GrowthFirmsintheUnitedStates:KeyTrendsandNewDataOpportunities

J.DanielKim,JoonkyuChoi,NathanGoldschlag,JohnHaltiwanger

2024-074

Pleasecitethispaperas:

Kim,J.Daniel,JoonkyuChoi,NathanGoldschlag,andJohnHaltiwanger(2024).“High-GrowthFirmsintheUnitedStates:KeyTrendsandNewDataOpportunities,”FinanceandEconomicsDiscussionSeries2024-074.Washington:BoardofGovernorsoftheFederalReserveSystem,

/10.17016/FEDS.2024.074

.

NOTE:StafworkingpapersintheFinanceandEconomicsDiscussionSeries(FEDS)arepreliminarymaterialscirculatedtostimulatediscussionandcriticalcomment.TheanalysisandconclusionssetfortharethoseoftheauthorsanddonotindicateconcurrencebyothermembersoftheresearchstafortheBoardofGovernors.ReferencesinpublicationstotheFinanceandEconomicsDiscussionSeries(otherthanacknowledgement)shouldbeclearedwiththeauthor(s)toprotectthetentativecharacterofthesepapers.

High-GrowthFirmsintheUnitedStates:

KeyTrendsandNewDataOpportunities*

J.DanielKim†JoonkyuChoi‡NathanGoldschlag§

JohnHaltiwanger¶September10,2024

Abstract

UsingadministrativedatafromtheU.S.CensusBureau,weintroduceanewpublic-usedatabasethattracksactivitiesacrossfirmgrowthdistributionsovertime.Withthesenewdata,weuncoverseveralkeytrendsforhigh-growthfirms—criticalen-ginesofinnovationandeconomicgrowth.First,theshareoffirmsthatarehigh-growthhassteadilydecreasedoverthepastfourdecades,drivennotonlybyfallingratesofentrepreneurshipbutalsolanguishinggrowthamongexistingfirms.Sec-ond,thisdeclineisparticularlypronouncedamongyoungandsmallfirms,whiletheshareofhigh-growthfirmshasbeenrelativelystableamonglargeandoldfirms.Wealsofindrichvariationacrossstatesandsectors.Tofacilitatefutureresearch,wehighlighthowthesedatacanbeusedtoaddressvariousresearchquestions.

JELCodes:L11,L25,L26,O30,O40

Keywords:OrganizationalGrowth,Entrepreneurship,High-GrowthFirms,Busi-nessDynamism,PubliclyAvailableDataset

*AnyopinionsandconclusionsexpressedhereinarethoseoftheauthoranddonotrepresenttheviewsoftheU.S.CensusBureau,theFederalReserveBoardofGovernorsoritsstaff.TheCensusBureauhasensuredappropriateaccessanduseofconfidentialdataandhasreviewedtheseresultsfordisclosureavoidanceprotection.DRBApprovalNumber(s):CBDRB-FY24-0168.DMSProjectNumber7083300.WethankSeanWang,CherylGrim,andparticipantsattheU.S.CensusBureauCenterforEconomicStudiesseminar,andparticipantsattheCRIWNBERSummerInstitutesessionforhelpfulcommentsandsuggestions.

†TheWhartonSchool,UniversityofPennsylvania‡FederalReserveBoardofGovernors

§U.S.CensusBureau

¶UniversityofMaryland

1

1Introduction

SincePenrose’s(1959)seminalworkonthegrowthoffirms,extantliteratureinbothmanagementandeconomicshasofferedvarioustheoreticalaccountsofwhereandhowhigh-growthfirmsemerge—rangingfromexternalfactorssuchasenvironmentalcon-ditionsandcompetition(e.g.,

CarrollandHannan

1989;

BaumandMezias

1993;

Sterk

etal.

2021;

Sivadasanetal.

2024)toorganizationaltraitsincludingroutines,manage

-rialquality,andtechnologicalinnovation(e.g.,

LucasJr

1978;

NelsonandWinter

1982;

AcsandAudretsch

1987;

EisenhardtandSchoonhoven

1990)

.Inspiteofthedifferentdisciplinaryroots,acommonthemeinthislargebodyofresearchisthatfirmgrowthcriticallydependsontheageoftheorganization(forreview,see

Khaire

2010

and

Coad

2024)

.Inparticular,recentstudieshaveshownthatyoungfirmsexhibitbothhighdis-

persionandpositiverightskewnessingrowthrates(Deckeretal.,

2016;

Haltiwanger

etal.,

2016;

GuzmanandStern,

2020),highlightingthecentralroleofentrepreneurship

foreconomicdynamismandhigh-growthactivity.Atthesametime,othersdocumentadeclineinthepaceofentrepreneurshipandgrowthratesamongyoungfirms,aswellas

anincreasinglydominantroleoflargeincumbentfirms(Autoretal.,

2020;

Haltiwanger,

2022)

.Whiletheheterogeneousnatureoffirmgrowthisanincreasinglyactiveareaofresearch,onebarriertostudyinghigh-growthfirms—especiallyamongyoungandsmallorganizations—isthelimitedaccesstolarge-scaledata.

Nationallyrepresentativeadministrativemicrodata,suchastheCensusBureau’sLongitudinalBusinessDatabase(LBD),havebeenvaluableforadvancingourunder-

standingoforganizationsandhowtheygrow(NagarajandTranchero

2023;

Sterketal.

2021;

Sivadasanetal.

2024)

.However,gainingaccesstosuchdatacanbedifficult.InthecaseofconfidentialCensusmicrodata,accessislimitedtoapprovedprojectsviatheFederalStatisticalResearchDataCenters(FSRDCs).AlternativedatasourcessuchasNationalEstablishmentTimeSeries(NETS)orCompustatintroducesampleselection

2

andmeasurementchallenges

.1

Meanwhile,theOrganisationforEconomicCo-operationandDevelopment(OECD)hascollectedandmadeavailableaggregatedataonfirmdynamics—withanemphasisonhigh-growthfirmsgiventheirrelevanceforpolicy—bypartneringwithnationalstatisticalagencies.Todate,nosuchdataareavailablefortheU.S.

WeaddressthesegapsbyintroducingtheBusinessDynamicsStatisticsofhigh-growthfirms(BDS-HG)tables,whichoffersarich,public-usesourceofinformationonfirmgrowthintheU.S.AlthoughtheBDS-HGtablesprovidecategory-levelstatis-tics,theyareverygranular.Forexample,thestatisticsbydetailedindustriesprovidesmorethan114thousandobservationsofgrowthratebinby4-digitNAICSclassifica-tion.Thesenewlyavailablepublic-usestatisticsopenupnewresearchopportunitiesbyprovidingvariationbystateandindustry.Wedescribesomeofthepotentialresearchavenuesenabledbythesedataingreaterdetailbelow.Additionally,theBDS-HGtablesallowresearcherstovalidateanalysesconductedusingotherdatasetsormeasures.WeregardtheBDS-HGdataasacomplementratherthanasubstituteforcomprehensiveadministrativemicrodataonfirmssuchastheLBD.Thelatterremainimportantsourcesforfirm-levelanalysis.However,theBDS-HGprovidesnovelfirm-basedgrowthratedistributionstatisticsatagranularlevelinthepublicdomainthatcanbeusedforavarietyofresearchpurposes.

Inthispaper,wedescribetheBDS-HGtabulations,whichprovidetheannualstockandflowoffirms,establishments,andemploymentacrossthefirmgrowthratedistri-bution.Thesenewpublic-usedatatablesleverageconfidentialadministrativedatafromtheU.S.CensusBureaucoveringallnon-farmemployerbusinessesintheU.S.between1977and2021.TheBDS-HGtablesprovidetabulationsbybothwithin-yeargrowthratepercentilegroupsandabsolutegrowthrates.TheBDS-HGdatatabulatesfirms,estab-

lishments,andemploymentbyfirmgrowthatthenational-levelandbystate,detailed

1Wediscusssomeofthesechallengesingreaterdetailbelow.

3

industry(upto4-digitNAICS),firmsize,andfirmagecategorieswithseveralmulti-way

tables(e.g,.firmgrowthbyfirmageandfirmsize)

.2

TheBDS-HGdatawillbeupdatedonannualbasis.Accesstothesenewdataalongwithadditionaldocumentationcanbefoundat

/programs-surveys/ces/data/public-use-data/ex

perimental-bds/bds-high-growth.html.

Toillustratethepotentialuseandpromiseofthesenewdata,webeginbycharacterizingthechangingnatureofthefirmemploymentgrowthdistributioninthepastfewdecadesandtheoriginsofhigh-growthfirms.

Severalstrikingpatternsemerge.First,whiletheregenerallyhasbeenanincreaseinthenumberoffirmsintheU.S.inthepastfourdecades,theshareoffirmsthatarehigh-growthhassteadilydecreasedfrom18%in1985to12%in2015.Thisdeclineisdrivenbybothfallingsharesofnewfirmsandlanguishinggrowthamongexistingfirms.Intandem,theU.S.economyhaswitnessedasubstantialriseinfirmswithvirtuallyzeroemploymentchangefrom32%to40%overthesame30-yearperiod.Second,weexploretheevolvingsourcesofhigh-growthfirms.Withrespecttofirmsizeandage,wefindthatthedeclineintheshareofhigh-growthfirmsisparticularlysevereforyoungandsmallfirms.Incontrast,matureandlargefirmsdonotexhibitsubstantialchangesinhigh-growthactivityovertime.Intermsofindustry,wefindthatallsectors—especiallyconstructionandmanufacturing—haveshownageneraldeclineintheshareofhigh-growthfirms.Interestingly,afewsectorssuchasInformation(e.g.,software,mediastreaming,computinginfrastructure)haveshownamodestreboundbeginningin2010.However,allsectorsremainfarbelowtheirsharesofhigh-growthfirmsfromearlierdecades.Wealsofindmeaningfulgeographicvariationinhigh-growthfirmactivity.Comparedtothebaselineshareofallfirms,14statesandDCare“overrepresented”intheirshareofhigh-growthfirms.Amongthem,Florida,California,andTexasdispropor-

2TheFall2024releasewillincludemoregranularstatisticsatthesector×statelevel,whichwouldenableresearcherstomakeuseofsector-orstate-specificshocksinadifference-in-differencesanalyticframework.

4

tionatelycontributetohigh-growthfirmsevenafteraccountingfortheirrelativelylargebaselineshareofallfirms.

OurinitialresultshighlighttherichpotentialoftheBDS-HGdataforfutureresearch.Tofurtherdemonstratethispoint,wediscussvariousdomainsforfutureresearchrelatedtofirmgrowth—suchasdiversification,labormarketfrictions,andinnovation—andhowtheBDS-HGdatacanhelpinadvancingeachlineofwork.OurhopeisthattheBDS-HGdatawillhelpenableahostofnewresearchquestionsunderlyinghigh-growthfirms.

Thepaperproceedsasfollows.Section

2

describestheinputdataandthemethod-ologyforcomputingfirmgrowthratesalongwithsomedescriptivestatisticsaboutthepropertiesofthefirmgrowthratedistribution.Section

3

providesapreviewoftheBDS-HGdata,describingthecharacteristicsofhigh-growthfirms.Sections

4

outlinesspecificusecasesoftheBDS-HGforrelevantfutureresearchinstrategicmanagementandeconomics.Section

5

concludes.

2DataandMethodology

TheBDS-HGtablesarederivedfromtheLongitudinalBusinessDatabase(LBD),theframeofallnon-farmemployerbusinessesintheU.S.

(JarminandMiranda,

2002;

Chow

etal.,

2021)

.3

Currently,theLBDcoversyears1976to2021.TheLBDprovidesinfor-mationattheestablishment-levelsuchasemployment,payroll,industry,age,andfirm

3Severalalternativedatasourcesarecurrentlyavailable,buttheyfacesomeconstraints.Forinstance,researcherscommonlyusedataonventurecapital-financedstartups(e.g.,VentureSource)andpubliccom-panies(e.g.,Compustat)tostudyhigh-growthfirms.However,akeylimitationisthatthesesamplesarehighlyselectedonsuccessfulcompaniesthatmanagetoraisefundingorreachanIPO.Incontrast,establishment-leveldatafromNETSprovideamorecomprehensivecoverage.However,thisdatasetisknowntobelimitedinitslongitudinalcoverageespeciallyforstartups;forexample,

CraneandDecker

(2019)estimatethat90%ofyoungfirms’employmentrecordsareimputed

.Similarly,statebusinessregis-

trationrecordsprovidelarge-scaledataonpotentialhigh-growthfirmsatbirth(GuzmanandStern

2020),

butlongitudinalinformation(e.g.,employmentgrowth)isnotavailable.

5

identifiers.Employmentcapturesbothfullandpart-timeemployeeswhoareontheestablishment’spayroll,includingsalariedofficersandexecutivesofcorporations,dur-ingthepayperiodthatincludesMarch12th.Thisalsoincludesemployeesonpaidsickleave,holidays,andvacationsbutexcludesproprietorsandpartnersofunincorporatedbusinesses

.4

Wecomputeyear-to-yeargrowthofestablishmentsandfirmsusingameasurefirstdevelopedby

Törnqvistetal.

(1985),whichhasbecomestandardinthefirmdynamics

literature(Davisetal.,

1996;

Coad,

2024)

.Thisgrowthmeasure,henceforthTVV/DHS,dividesthechangeinemploymentfromt−1totbyaverageemployment.Wediscussthismeasureingreaterdetailbelow.TheTVV/DHSmeasuresharesusefulpropertieswithlogdifferencesandnaturallyaccommodatesentryandexit.Sincethedenominatorcontainstheaveragevalueovertwoyears,thismeasureisalsosymmetricandalleviates

regression-to-the-meaneffects(Haltiwangeretal.,

2013)

.Moreover,TVV/DHSgrowthhasusefulaggregationproperties.Itcanbeflexiblydefinedforaggregationsofes-tablishmentseitherintofirmsorcellsdefinedbyestablishmentorfirmcharacteristics.Aggregatingthisgrowthmeasuretothefirm-levelresultsinameasureof“organic”firmgrowththatabstractsawayfromfirm-levelemploymentchangesduetomergersandac-quisitions(c.f.,

Sivadasanetal.

2024)

.ByconstructionTVV/DHSgrowthisboundedbetween-2(firmsthattransitionfromnon-zerotozeroemploymenti.e.,exit)and2(firmsthattransitionfromnon-zerotozeroemploymenti.e.,entry).

Specifically,establishmenti’sgrowthrate(gi,t)isdefinedas

gi,t=(1)

4TheMarch12threferenceperiodalsoimpliesthatmuchoftheeconomiceffectsoftheCOVID-19pandemicappearinthe2021butnot2020BDStabulations.NoneofthestatesintheU.S.hadamandatoryshelter-in-placeorder(i.e.,lockdown)asofMarch12,2020.ForadditionalinformationaboutthetimingofCensusBusinessdataandtheCOVID-19pandemicsee

Beemetal.

(2022)

.

6

whereEi,tisemploymentatestablishmentiattimetandXi,t=.Firm-levelgrowthisthenthesumofemploymentchangesdividedbythesumofaverageestablishmentemployment,forallestablishmentsiassociatedwithfirmfattimet,asfollows:

Thesumofemploymentchangesweightedbyaverageemploymentisequivalenttotheweightedaverageofestablishment-levelgrowthratesusingtheemploymentshare, ,asweights.

Thereareseveralrelationshipsbetweenfirmsize,age,andgrowththatareimportanttonote.First,theshapeofthegrowthratedistributionbyfirmsizedependscriticallyonwhetheraverage(betweent-1andt)orinitial(t-1)firmsizeisusedtoclassifyfirms

.6

Averagesizewilltendtoallocatemoregrowthandlesscontractiontolargefirmsizebinscomparedtoaninitialsizemeasure.Thisisbecausefirmgrowthexhibitssignificantmeanreversion—firmsthatgrewfromt-2tot-1aremuchmorelikelytocontractfromt-1tot—duetotransitoryshocks.Second,inadditiontotransitoryshocks,firmsexperiencesystematicandpersistentgrowthpatternsoverthefirmage

lifecycle(Deckeretal.,

2016)

.OnlineAppendixAprovidesadditionaldetailsabouttheTVV/DHSmeasureanditsrelationshiptosizeandage.

Wecategorizehigh-growthfirmsusingtwodistinctbutrelatedmethodsofgroupingfirmsbasedupontheiremploymentgrowthrates.Thefirstispercentile-basedandusesthedistributionofgrowthratesacrossfirmsandthesecondisbasedupongrowthratevalues.Inbothcases,ourmethodologyattemptstomaximizethecomparabilityofthe

BDS-HGtabulationstotheOECD’sDynEmpprogram,whichprovidesinternationally

5Exitingestablishmentswillbeassignedafirmgrowthratebasedupontheirassociatedfirmint-1.

6Averageandinitialfirmsizegroupingscorrespondstofsizeandifsize,respectively,fromtheBDStabulations.

7

comparablemeasuresofbusinessdynamismforanumberofOECDcountries

.7

Forthefirstmethod,weclassifyfirmsbasedontheirpositiononthewithin-yearav-erageemployment-weightedgrowthratedistribution.Employmentweightingisdone,aftercomputingfirmgrowthratesandthesumofaverageemployment(denom)atthefirm-level,sortingfirmswithinayearinascendingorderbytheirgrowthrate,breakingtiesrandomly,computingeachfirm’scumulativeshareofeconomywideaverageem-ployment,thensummingthisshareacrossfirmsinthesortedfile.Firmsthataccountofacumulativeshareoflessthanorequalto10percentoftotalaverageemploymentareassignedtothep1top10bin.

Weclassifyfirmsintofivepercentile-basedemploymentgrowthbins(fempgr_grpct

intheBDS-HGtables):a)p1-p10;b)p11-p25;c)p26-p75;d)p76-p90;e)p91-p99.Byconstruction,thismethodinvolvesgrowthratecut-offsthatvaryovertime.Asthefirmgrowthratedistributioncontractsovertime,thegrowthrateassociatedwiththe90thpercentileoftheemployment-weightedgrowthratedistributionwillchange.Toillus-tratethispoint,Figure

1

showstheaveragegrowthrateassociatedwiththe10th,50th,and90thpercentileoftheemployment-weightedgrowthratedistributionforgroupingsofyears.Consistentwiththefindingsof

Deckeretal.

(2016),wefindthatthegrowthrate

associatedwiththe90thpercentileofthegrowthratedistributionhasfallensignificantly

overtimefrom0.35to0.23fromthelate1980stothe2010s.Lessdramatic,butstillap-parent,istheriseofthegrowthrateassociatedwiththebottom,or10thpercentile,whichrosefrom-0.27to-0.20overthesameperiod.Eventhemedian,or50thpercentile,hascontractedslightlyfallingtowardszero.Thesepatternsoverroughlyfortyyearsimplyanincreasingcompressioninthefirmgrowthratesatboththetopandbottomportions

ofthedistribution,wherebythefastestgrowingfirmsintheeconomyaregrowingless

7NotabledifferencesbetweentheBDS-HGandOECDDynEmpmethodologiesinclude:(1)wedonotrandomlyperturbthegrowthratesofzerogrowthfirms,(2)provideslightlylessdetailaroundthemedianofthewithin-yearemployment-weightedgrowthratedistribution,and(3)wedonotprovidefirmweightedpercentilebins.

8

andthefirmscontractingthemostarecontractingbyless.

Figure1:Firmgrowthratesbypercentileovertime

Source:LBDv202100.

Notes:Figureshowstheaveragefirm-employmentgrowthratesbydecadesamongfirmsclassified

betweenthe9thand11th(labeled10th),49thand51th(labeled50th),andthe89thand91th(labeled90th)percentilesoftheemploymentweigthedgrowthratedistribution.

Motivatedbythetimevaryingnatureofthepercentile-basedmethod,oursecondapproachclassifiesfirmsbasedupontheiremploymentgrowthratevalues.Weclassify

firmsintoninebins(fempgr_grintheBDS-HGtables):a)-2;b)(-2to-0.8];c)(-0.8to-0.2];d)(-0.2to-0.01];e)(-0.01to0.01);f)[0.01to0.2);g)[0.2to0.8);h)[0.8to2);i)2.Bydefiningfixedrangesofemploymentgrowthratesforeachgroup,thistime-invariantapproachallowsustocomparetheabsolutegrowthdynamicsoffirmsovertime.Duringeconomicdownturns,forexample,firmsmaybegrowinglessandcontractingmore,inwhichcaseeconomicactivitywillshiftacrossthegrowthratebins.

Intheanalysesthatfollowwefocusonhigh-growthfirmsusingthegrowthrate-

9

basedtabulations(fempgr_gr).Thisallowsustoanalyzetheabsolutegrowthperfor-manceoffirmsintheU.S.economyovertime.Wedefinehigh-growthfirmswhosefirmgrowthrateis0.8orgreater.Forcomparison,forthepercentile-basedmeasureswedefinefirmsinthetop10percentileofthewithinyeargrowthratedistributionashigh-growth.Continuingfirmsareconsideredhigh-growth,bythisdefinition,iftheirsize

increasedbymorethanapproximately130%year-over-year.8

Inadditiontocontinuers,newandreactivatingfirmswillalsobeconsideredhigh-growthsincetheirgrowthrateismechanicallyequalto2.

Tomotivatethisthresholdforhigh-growthfirms,Figure

2

showsthecountoffirmsacrossdetailedfirmgrowthratebinsinPanelAandthepercentoffirmsPanelB

.9

InPanelA,theheightofeachdarkcircleshowsthecountoffirms(withalogscaley-axis)ateachpointalongthefirmgrowthratedistributiononaveragebetween1978and1982.Thesizeofeachbubblereflectstheshareofaverageemploymentaccountedforbyeachgrowthratebininthoseyears.Thehollowcirclesshowasimilarstatisticfortheyears2016to2021.PanelBshowsthepercentoffirmsacrossthegrowthbinsovertimeratherthanfirmcounts.SeveralpatternsarenotableinFigure

2.

First,inPanelAandBweseethatthemajorityoffirmshavegrowthratesbetween-0.2and0.2,whichroughlycorrespondstoa22%contractionorexpansion

.10

Inparticular,almost29%offirmsinthelate1970shadnearlyzerogrowthrates,whichroseto37%inlate2010s.Therearealsoalargenumberoffirmsthatexit(-2)orenter(2),buttheyaccountformuchlessemploymentthanthosewithinthe-0.2to0.2band.Sincethenumber

8TheTVV/DHSgrowthmeasurecanbetranslatedintopercentdifferencesusingtheimpliedrelation-shipbetweenthetwo.Foragivenxandy,thepercentdifferenceisgivenasgpct=andtheTVV/DHSdifferenceisgtvv/dhs=.Thisimpliesthatgpct=

9ThesebinshavemoredetailsthanareavailableintheBDS-HGtabulations.

10The“kink”inthedistributionat(-1,0.8]and[0.8,1)isdrivenby“lumpiness”inthejointsizeandgrowthratedistribution.Firmswithoneortwoemployeesarequitecommonamongthepopulationoffirms.Ifafirmwithoneemployeeaddstwoadditionalemployeesitsgrowthrateis1,whichisontheexcludededgeofthe[0.8,1)bin.

10

Figure2:DetailedDistributionofFirmGrowthRates,1980vs.2018

(a)LogFirmCounts

(b)PercentofFirms

Source:LBDv202100.

Notes:PanelAshowsaveragecountoffirms(logscaley-axis)acrossgroupingsofyearsbydetailed

growthratebins.NotethatthesebinsaremoredisaggregatethanthoseprovidedintheBDS-HG

tabulations.Solidcirclesrepresentaveragecountsfortheearlierperiod(1978-1982)andhollowcirclesshowaveragecountsforthelaterperiod(2016-2021).PanelBshowstherpercentoffirmsaccountedforbyeachbin.

11

offirmshasrisensignificantlyovertimetheabsolutecountoffirmsthatenterorexit

increasesslightly(PanelA)buttheshareoffirmsthatenterorexithasdeclined(PanelB).Second,thecompressionofthegrowthratedistributionshowninFigure

2

canbeseeninthechangesinthecountsandsharesoffirmsacrossthegrowthratedistribution.Thenumberoffirmsthatwithlittletozerochangeinemploymentrosethemostbetween1980to2018.Thecountoffirmsthatexperiencedsignificantgrowthorcontractiondeclinedsignificantly.

Tofurtherdemonstratethedifferencesbetweenthepercentile-basedandgrowthrate-basedbins,Figure

3

showstheshareoffirmsthatareclassifiedashigh-growthbybothmeasures.PanelAshowsthepercentoffirmsthatareclassifiedashigh-growthusingthegrowthrate-basedmeasures,decomposedintoallfirms(lightgraybars)andjustcon-tinuers(darkgraybars).PanelBdoesthesamebutforthepercentile-basedmeasures.PanelAshowsthatwhereasroughly17%offirmswerehigh-growthin1980,thatsharefellto13%in2020.Incontrast,unsurprisingly,thepercentile-basedbinsshowamuchflatterseriesforbothallhigh-growthfirmsandcontinuerhigh-growthfirms.Asmen-tionedpreviously,thisisdrivenbythefactthatasthegrowthratedistributioncontractssotoodoesthe90thpercentilecutoff.Thetoppercentile-basedbinwillalwayscontainthe10%ofaverageemploymentwiththehighestgrowthratesevenasthegrowthratesofthosefirmsdeclines.Variationintheshareoffirmscoveredbythatbin,then,reflectdifferencesinthesizecompositionofthefastestgrowingfirms.Thepercentile-basedmethodalsocastsawidernetwithmanymorefirmsclassifiedashigh-growththanthe0.8cutoffweuseforthegrowthrate-basedmethod.

Inthenextsectionweprovideapreviewofthesestatistics,highlightinginterestingpatternsinthecompositionofhigh-growthfirmsovertimeintermsoffirmsize,age,industry,andgeography.Allofthefollowingfigurescanbegeneratedusingthenew,publiclyavailableBDS-HGtabulations.

12

Figure3:High-GrowthFirmShares

(a)GrowthRate-basedMethod(b)Percentile-basedMethod

Source:BDS-HG2021.

Notes:Panel(A)showsthepercentoffirmsclassifiedashigh-growthusingthegrowthrate-based

method(≥0.8TVV/DHS)andPanel(B)showsthepercentusingthepercentile-basedmethod(>90thpercentile).Allhigh-growthfirmsasapercentofallfirmsisshowninlightgrayandonlycontinuerhigh-growthfirmsindarkgray.

3TrendsinHigh-GrowthFirmActivity

Anatomyoffirmgrowthovertime

Table

1

showsthecountoffirms,jobcreation,andtotalemploymentassociatedwithallfirmsandtheshareofeachaccountedforbyhigh-growthcontinuingfirms,andhigh-growthentrantsovertime.Alloftheanalysesinthissectionutilizethegrowthrate-basedhighgrowthclassification.Thetotalnumberofnon-farmemployerfirmsrisesfromabout3.6millioninthelate1970storoughly5.3millionby2020.Overthesameperiod,theshareofhigh-growthfirmsfellfromapproximately18.4%to13.1%.Theshareofhigh-growthcontinuersdeclinedbyhalfandhigh-growthentrantsfellbyapproximatelyaquarterovertheperiod.Intermsofemployment,high-growthfirmsaccountforamuchsmallershare,fallingfromabout4%oftotalemploymentinthelate

13

1970stoabout2.2%bytheendoftheperiod.Incontrast,high-growthfirmsaccountforalargebutfallingshareofjobcreation,fromapproximately40.3%inthelate1970sto32.2%inthe2010s

.11

11EntrantsaccountforthebulkofhighgrowthfirmsascanbeseenfromTable

1.

Therefore,withthe

recentsurgeinnewbusinessapplications(Haltiwanger,

2022;

DeckerandHaltiwanger,

2023),theshare

ofhighgrowthfirmsislikelytohaverisensomewhatafterthepandemic.

14

Table1:SummaryStatisticsofHigh-GrowthFirmsintheU.S.

Decade

Firms

Allhigh-growth(%

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论