




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FinanceandEconomicsDiscussionSeries
FederalReserveBoard,Washington,D.C.
ISSN1936-2854(Print)
ISSN2767-3898(Online)
High-GrowthFirmsintheUnitedStates:KeyTrendsandNewDataOpportunities
J.DanielKim,JoonkyuChoi,NathanGoldschlag,JohnHaltiwanger
2024-074
Pleasecitethispaperas:
Kim,J.Daniel,JoonkyuChoi,NathanGoldschlag,andJohnHaltiwanger(2024).“High-GrowthFirmsintheUnitedStates:KeyTrendsandNewDataOpportunities,”FinanceandEconomicsDiscussionSeries2024-074.Washington:BoardofGovernorsoftheFederalReserveSystem,
/10.17016/FEDS.2024.074
.
NOTE:StafworkingpapersintheFinanceandEconomicsDiscussionSeries(FEDS)arepreliminarymaterialscirculatedtostimulatediscussionandcriticalcomment.TheanalysisandconclusionssetfortharethoseoftheauthorsanddonotindicateconcurrencebyothermembersoftheresearchstafortheBoardofGovernors.ReferencesinpublicationstotheFinanceandEconomicsDiscussionSeries(otherthanacknowledgement)shouldbeclearedwiththeauthor(s)toprotectthetentativecharacterofthesepapers.
High-GrowthFirmsintheUnitedStates:
KeyTrendsandNewDataOpportunities*
J.DanielKim†JoonkyuChoi‡NathanGoldschlag§
JohnHaltiwanger¶September10,2024
Abstract
UsingadministrativedatafromtheU.S.CensusBureau,weintroduceanewpublic-usedatabasethattracksactivitiesacrossfirmgrowthdistributionsovertime.Withthesenewdata,weuncoverseveralkeytrendsforhigh-growthfirms—criticalen-ginesofinnovationandeconomicgrowth.First,theshareoffirmsthatarehigh-growthhassteadilydecreasedoverthepastfourdecades,drivennotonlybyfallingratesofentrepreneurshipbutalsolanguishinggrowthamongexistingfirms.Sec-ond,thisdeclineisparticularlypronouncedamongyoungandsmallfirms,whiletheshareofhigh-growthfirmshasbeenrelativelystableamonglargeandoldfirms.Wealsofindrichvariationacrossstatesandsectors.Tofacilitatefutureresearch,wehighlighthowthesedatacanbeusedtoaddressvariousresearchquestions.
JELCodes:L11,L25,L26,O30,O40
Keywords:OrganizationalGrowth,Entrepreneurship,High-GrowthFirms,Busi-nessDynamism,PubliclyAvailableDataset
*AnyopinionsandconclusionsexpressedhereinarethoseoftheauthoranddonotrepresenttheviewsoftheU.S.CensusBureau,theFederalReserveBoardofGovernorsoritsstaff.TheCensusBureauhasensuredappropriateaccessanduseofconfidentialdataandhasreviewedtheseresultsfordisclosureavoidanceprotection.DRBApprovalNumber(s):CBDRB-FY24-0168.DMSProjectNumber7083300.WethankSeanWang,CherylGrim,andparticipantsattheU.S.CensusBureauCenterforEconomicStudiesseminar,andparticipantsattheCRIWNBERSummerInstitutesessionforhelpfulcommentsandsuggestions.
†TheWhartonSchool,UniversityofPennsylvania‡FederalReserveBoardofGovernors
§U.S.CensusBureau
¶UniversityofMaryland
1
1Introduction
SincePenrose’s(1959)seminalworkonthegrowthoffirms,extantliteratureinbothmanagementandeconomicshasofferedvarioustheoreticalaccountsofwhereandhowhigh-growthfirmsemerge—rangingfromexternalfactorssuchasenvironmentalcon-ditionsandcompetition(e.g.,
CarrollandHannan
1989;
BaumandMezias
1993;
Sterk
etal.
2021;
Sivadasanetal.
2024)toorganizationaltraitsincludingroutines,manage
-rialquality,andtechnologicalinnovation(e.g.,
LucasJr
1978;
NelsonandWinter
1982;
AcsandAudretsch
1987;
EisenhardtandSchoonhoven
1990)
.Inspiteofthedifferentdisciplinaryroots,acommonthemeinthislargebodyofresearchisthatfirmgrowthcriticallydependsontheageoftheorganization(forreview,see
Khaire
2010
and
Coad
2024)
.Inparticular,recentstudieshaveshownthatyoungfirmsexhibitbothhighdis-
persionandpositiverightskewnessingrowthrates(Deckeretal.,
2016;
Haltiwanger
etal.,
2016;
GuzmanandStern,
2020),highlightingthecentralroleofentrepreneurship
foreconomicdynamismandhigh-growthactivity.Atthesametime,othersdocumentadeclineinthepaceofentrepreneurshipandgrowthratesamongyoungfirms,aswellas
anincreasinglydominantroleoflargeincumbentfirms(Autoretal.,
2020;
Haltiwanger,
2022)
.Whiletheheterogeneousnatureoffirmgrowthisanincreasinglyactiveareaofresearch,onebarriertostudyinghigh-growthfirms—especiallyamongyoungandsmallorganizations—isthelimitedaccesstolarge-scaledata.
Nationallyrepresentativeadministrativemicrodata,suchastheCensusBureau’sLongitudinalBusinessDatabase(LBD),havebeenvaluableforadvancingourunder-
standingoforganizationsandhowtheygrow(NagarajandTranchero
2023;
Sterketal.
2021;
Sivadasanetal.
2024)
.However,gainingaccesstosuchdatacanbedifficult.InthecaseofconfidentialCensusmicrodata,accessislimitedtoapprovedprojectsviatheFederalStatisticalResearchDataCenters(FSRDCs).AlternativedatasourcessuchasNationalEstablishmentTimeSeries(NETS)orCompustatintroducesampleselection
2
andmeasurementchallenges
.1
Meanwhile,theOrganisationforEconomicCo-operationandDevelopment(OECD)hascollectedandmadeavailableaggregatedataonfirmdynamics—withanemphasisonhigh-growthfirmsgiventheirrelevanceforpolicy—bypartneringwithnationalstatisticalagencies.Todate,nosuchdataareavailablefortheU.S.
WeaddressthesegapsbyintroducingtheBusinessDynamicsStatisticsofhigh-growthfirms(BDS-HG)tables,whichoffersarich,public-usesourceofinformationonfirmgrowthintheU.S.AlthoughtheBDS-HGtablesprovidecategory-levelstatis-tics,theyareverygranular.Forexample,thestatisticsbydetailedindustriesprovidesmorethan114thousandobservationsofgrowthratebinby4-digitNAICSclassifica-tion.Thesenewlyavailablepublic-usestatisticsopenupnewresearchopportunitiesbyprovidingvariationbystateandindustry.Wedescribesomeofthepotentialresearchavenuesenabledbythesedataingreaterdetailbelow.Additionally,theBDS-HGtablesallowresearcherstovalidateanalysesconductedusingotherdatasetsormeasures.WeregardtheBDS-HGdataasacomplementratherthanasubstituteforcomprehensiveadministrativemicrodataonfirmssuchastheLBD.Thelatterremainimportantsourcesforfirm-levelanalysis.However,theBDS-HGprovidesnovelfirm-basedgrowthratedistributionstatisticsatagranularlevelinthepublicdomainthatcanbeusedforavarietyofresearchpurposes.
Inthispaper,wedescribetheBDS-HGtabulations,whichprovidetheannualstockandflowoffirms,establishments,andemploymentacrossthefirmgrowthratedistri-bution.Thesenewpublic-usedatatablesleverageconfidentialadministrativedatafromtheU.S.CensusBureaucoveringallnon-farmemployerbusinessesintheU.S.between1977and2021.TheBDS-HGtablesprovidetabulationsbybothwithin-yeargrowthratepercentilegroupsandabsolutegrowthrates.TheBDS-HGdatatabulatesfirms,estab-
lishments,andemploymentbyfirmgrowthatthenational-levelandbystate,detailed
1Wediscusssomeofthesechallengesingreaterdetailbelow.
3
industry(upto4-digitNAICS),firmsize,andfirmagecategorieswithseveralmulti-way
tables(e.g,.firmgrowthbyfirmageandfirmsize)
.2
TheBDS-HGdatawillbeupdatedonannualbasis.Accesstothesenewdataalongwithadditionaldocumentationcanbefoundat
/programs-surveys/ces/data/public-use-data/ex
perimental-bds/bds-high-growth.html.
Toillustratethepotentialuseandpromiseofthesenewdata,webeginbycharacterizingthechangingnatureofthefirmemploymentgrowthdistributioninthepastfewdecadesandtheoriginsofhigh-growthfirms.
Severalstrikingpatternsemerge.First,whiletheregenerallyhasbeenanincreaseinthenumberoffirmsintheU.S.inthepastfourdecades,theshareoffirmsthatarehigh-growthhassteadilydecreasedfrom18%in1985to12%in2015.Thisdeclineisdrivenbybothfallingsharesofnewfirmsandlanguishinggrowthamongexistingfirms.Intandem,theU.S.economyhaswitnessedasubstantialriseinfirmswithvirtuallyzeroemploymentchangefrom32%to40%overthesame30-yearperiod.Second,weexploretheevolvingsourcesofhigh-growthfirms.Withrespecttofirmsizeandage,wefindthatthedeclineintheshareofhigh-growthfirmsisparticularlysevereforyoungandsmallfirms.Incontrast,matureandlargefirmsdonotexhibitsubstantialchangesinhigh-growthactivityovertime.Intermsofindustry,wefindthatallsectors—especiallyconstructionandmanufacturing—haveshownageneraldeclineintheshareofhigh-growthfirms.Interestingly,afewsectorssuchasInformation(e.g.,software,mediastreaming,computinginfrastructure)haveshownamodestreboundbeginningin2010.However,allsectorsremainfarbelowtheirsharesofhigh-growthfirmsfromearlierdecades.Wealsofindmeaningfulgeographicvariationinhigh-growthfirmactivity.Comparedtothebaselineshareofallfirms,14statesandDCare“overrepresented”intheirshareofhigh-growthfirms.Amongthem,Florida,California,andTexasdispropor-
2TheFall2024releasewillincludemoregranularstatisticsatthesector×statelevel,whichwouldenableresearcherstomakeuseofsector-orstate-specificshocksinadifference-in-differencesanalyticframework.
4
tionatelycontributetohigh-growthfirmsevenafteraccountingfortheirrelativelylargebaselineshareofallfirms.
OurinitialresultshighlighttherichpotentialoftheBDS-HGdataforfutureresearch.Tofurtherdemonstratethispoint,wediscussvariousdomainsforfutureresearchrelatedtofirmgrowth—suchasdiversification,labormarketfrictions,andinnovation—andhowtheBDS-HGdatacanhelpinadvancingeachlineofwork.OurhopeisthattheBDS-HGdatawillhelpenableahostofnewresearchquestionsunderlyinghigh-growthfirms.
Thepaperproceedsasfollows.Section
2
describestheinputdataandthemethod-ologyforcomputingfirmgrowthratesalongwithsomedescriptivestatisticsaboutthepropertiesofthefirmgrowthratedistribution.Section
3
providesapreviewoftheBDS-HGdata,describingthecharacteristicsofhigh-growthfirms.Sections
4
outlinesspecificusecasesoftheBDS-HGforrelevantfutureresearchinstrategicmanagementandeconomics.Section
5
concludes.
2DataandMethodology
TheBDS-HGtablesarederivedfromtheLongitudinalBusinessDatabase(LBD),theframeofallnon-farmemployerbusinessesintheU.S.
(JarminandMiranda,
2002;
Chow
etal.,
2021)
.3
Currently,theLBDcoversyears1976to2021.TheLBDprovidesinfor-mationattheestablishment-levelsuchasemployment,payroll,industry,age,andfirm
3Severalalternativedatasourcesarecurrentlyavailable,buttheyfacesomeconstraints.Forinstance,researcherscommonlyusedataonventurecapital-financedstartups(e.g.,VentureSource)andpubliccom-panies(e.g.,Compustat)tostudyhigh-growthfirms.However,akeylimitationisthatthesesamplesarehighlyselectedonsuccessfulcompaniesthatmanagetoraisefundingorreachanIPO.Incontrast,establishment-leveldatafromNETSprovideamorecomprehensivecoverage.However,thisdatasetisknowntobelimitedinitslongitudinalcoverageespeciallyforstartups;forexample,
CraneandDecker
(2019)estimatethat90%ofyoungfirms’employmentrecordsareimputed
.Similarly,statebusinessregis-
trationrecordsprovidelarge-scaledataonpotentialhigh-growthfirmsatbirth(GuzmanandStern
2020),
butlongitudinalinformation(e.g.,employmentgrowth)isnotavailable.
5
identifiers.Employmentcapturesbothfullandpart-timeemployeeswhoareontheestablishment’spayroll,includingsalariedofficersandexecutivesofcorporations,dur-ingthepayperiodthatincludesMarch12th.Thisalsoincludesemployeesonpaidsickleave,holidays,andvacationsbutexcludesproprietorsandpartnersofunincorporatedbusinesses
.4
Wecomputeyear-to-yeargrowthofestablishmentsandfirmsusingameasurefirstdevelopedby
Törnqvistetal.
(1985),whichhasbecomestandardinthefirmdynamics
literature(Davisetal.,
1996;
Coad,
2024)
.Thisgrowthmeasure,henceforthTVV/DHS,dividesthechangeinemploymentfromt−1totbyaverageemployment.Wediscussthismeasureingreaterdetailbelow.TheTVV/DHSmeasuresharesusefulpropertieswithlogdifferencesandnaturallyaccommodatesentryandexit.Sincethedenominatorcontainstheaveragevalueovertwoyears,thismeasureisalsosymmetricandalleviates
regression-to-the-meaneffects(Haltiwangeretal.,
2013)
.Moreover,TVV/DHSgrowthhasusefulaggregationproperties.Itcanbeflexiblydefinedforaggregationsofes-tablishmentseitherintofirmsorcellsdefinedbyestablishmentorfirmcharacteristics.Aggregatingthisgrowthmeasuretothefirm-levelresultsinameasureof“organic”firmgrowththatabstractsawayfromfirm-levelemploymentchangesduetomergersandac-quisitions(c.f.,
Sivadasanetal.
2024)
.ByconstructionTVV/DHSgrowthisboundedbetween-2(firmsthattransitionfromnon-zerotozeroemploymenti.e.,exit)and2(firmsthattransitionfromnon-zerotozeroemploymenti.e.,entry).
Specifically,establishmenti’sgrowthrate(gi,t)isdefinedas
gi,t=(1)
4TheMarch12threferenceperiodalsoimpliesthatmuchoftheeconomiceffectsoftheCOVID-19pandemicappearinthe2021butnot2020BDStabulations.NoneofthestatesintheU.S.hadamandatoryshelter-in-placeorder(i.e.,lockdown)asofMarch12,2020.ForadditionalinformationaboutthetimingofCensusBusinessdataandtheCOVID-19pandemicsee
Beemetal.
(2022)
.
6
whereEi,tisemploymentatestablishmentiattimetandXi,t=.Firm-levelgrowthisthenthesumofemploymentchangesdividedbythesumofaverageestablishmentemployment,forallestablishmentsiassociatedwithfirmfattimet,asfollows:
Thesumofemploymentchangesweightedbyaverageemploymentisequivalenttotheweightedaverageofestablishment-levelgrowthratesusingtheemploymentshare, ,asweights.
Thereareseveralrelationshipsbetweenfirmsize,age,andgrowththatareimportanttonote.First,theshapeofthegrowthratedistributionbyfirmsizedependscriticallyonwhetheraverage(betweent-1andt)orinitial(t-1)firmsizeisusedtoclassifyfirms
.6
Averagesizewilltendtoallocatemoregrowthandlesscontractiontolargefirmsizebinscomparedtoaninitialsizemeasure.Thisisbecausefirmgrowthexhibitssignificantmeanreversion—firmsthatgrewfromt-2tot-1aremuchmorelikelytocontractfromt-1tot—duetotransitoryshocks.Second,inadditiontotransitoryshocks,firmsexperiencesystematicandpersistentgrowthpatternsoverthefirmage
lifecycle(Deckeretal.,
2016)
.OnlineAppendixAprovidesadditionaldetailsabouttheTVV/DHSmeasureanditsrelationshiptosizeandage.
Wecategorizehigh-growthfirmsusingtwodistinctbutrelatedmethodsofgroupingfirmsbasedupontheiremploymentgrowthrates.Thefirstispercentile-basedandusesthedistributionofgrowthratesacrossfirmsandthesecondisbasedupongrowthratevalues.Inbothcases,ourmethodologyattemptstomaximizethecomparabilityofthe
BDS-HGtabulationstotheOECD’sDynEmpprogram,whichprovidesinternationally
5Exitingestablishmentswillbeassignedafirmgrowthratebasedupontheirassociatedfirmint-1.
6Averageandinitialfirmsizegroupingscorrespondstofsizeandifsize,respectively,fromtheBDStabulations.
7
comparablemeasuresofbusinessdynamismforanumberofOECDcountries
.7
Forthefirstmethod,weclassifyfirmsbasedontheirpositiononthewithin-yearav-erageemployment-weightedgrowthratedistribution.Employmentweightingisdone,aftercomputingfirmgrowthratesandthesumofaverageemployment(denom)atthefirm-level,sortingfirmswithinayearinascendingorderbytheirgrowthrate,breakingtiesrandomly,computingeachfirm’scumulativeshareofeconomywideaverageem-ployment,thensummingthisshareacrossfirmsinthesortedfile.Firmsthataccountofacumulativeshareoflessthanorequalto10percentoftotalaverageemploymentareassignedtothep1top10bin.
Weclassifyfirmsintofivepercentile-basedemploymentgrowthbins(fempgr_grpct
intheBDS-HGtables):a)p1-p10;b)p11-p25;c)p26-p75;d)p76-p90;e)p91-p99.Byconstruction,thismethodinvolvesgrowthratecut-offsthatvaryovertime.Asthefirmgrowthratedistributioncontractsovertime,thegrowthrateassociatedwiththe90thpercentileoftheemployment-weightedgrowthratedistributionwillchange.Toillus-tratethispoint,Figure
1
showstheaveragegrowthrateassociatedwiththe10th,50th,and90thpercentileoftheemployment-weightedgrowthratedistributionforgroupingsofyears.Consistentwiththefindingsof
Deckeretal.
(2016),wefindthatthegrowthrate
associatedwiththe90thpercentileofthegrowthratedistributionhasfallensignificantly
overtimefrom0.35to0.23fromthelate1980stothe2010s.Lessdramatic,butstillap-parent,istheriseofthegrowthrateassociatedwiththebottom,or10thpercentile,whichrosefrom-0.27to-0.20overthesameperiod.Eventhemedian,or50thpercentile,hascontractedslightlyfallingtowardszero.Thesepatternsoverroughlyfortyyearsimplyanincreasingcompressioninthefirmgrowthratesatboththetopandbottomportions
ofthedistribution,wherebythefastestgrowingfirmsintheeconomyaregrowingless
7NotabledifferencesbetweentheBDS-HGandOECDDynEmpmethodologiesinclude:(1)wedonotrandomlyperturbthegrowthratesofzerogrowthfirms,(2)provideslightlylessdetailaroundthemedianofthewithin-yearemployment-weightedgrowthratedistribution,and(3)wedonotprovidefirmweightedpercentilebins.
8
andthefirmscontractingthemostarecontractingbyless.
Figure1:Firmgrowthratesbypercentileovertime
Source:LBDv202100.
Notes:Figureshowstheaveragefirm-employmentgrowthratesbydecadesamongfirmsclassified
betweenthe9thand11th(labeled10th),49thand51th(labeled50th),andthe89thand91th(labeled90th)percentilesoftheemploymentweigthedgrowthratedistribution.
Motivatedbythetimevaryingnatureofthepercentile-basedmethod,oursecondapproachclassifiesfirmsbasedupontheiremploymentgrowthratevalues.Weclassify
firmsintoninebins(fempgr_grintheBDS-HGtables):a)-2;b)(-2to-0.8];c)(-0.8to-0.2];d)(-0.2to-0.01];e)(-0.01to0.01);f)[0.01to0.2);g)[0.2to0.8);h)[0.8to2);i)2.Bydefiningfixedrangesofemploymentgrowthratesforeachgroup,thistime-invariantapproachallowsustocomparetheabsolutegrowthdynamicsoffirmsovertime.Duringeconomicdownturns,forexample,firmsmaybegrowinglessandcontractingmore,inwhichcaseeconomicactivitywillshiftacrossthegrowthratebins.
Intheanalysesthatfollowwefocusonhigh-growthfirmsusingthegrowthrate-
9
basedtabulations(fempgr_gr).Thisallowsustoanalyzetheabsolutegrowthperfor-manceoffirmsintheU.S.economyovertime.Wedefinehigh-growthfirmswhosefirmgrowthrateis0.8orgreater.Forcomparison,forthepercentile-basedmeasureswedefinefirmsinthetop10percentileofthewithinyeargrowthratedistributionashigh-growth.Continuingfirmsareconsideredhigh-growth,bythisdefinition,iftheirsize
increasedbymorethanapproximately130%year-over-year.8
Inadditiontocontinuers,newandreactivatingfirmswillalsobeconsideredhigh-growthsincetheirgrowthrateismechanicallyequalto2.
Tomotivatethisthresholdforhigh-growthfirms,Figure
2
showsthecountoffirmsacrossdetailedfirmgrowthratebinsinPanelAandthepercentoffirmsPanelB
.9
InPanelA,theheightofeachdarkcircleshowsthecountoffirms(withalogscaley-axis)ateachpointalongthefirmgrowthratedistributiononaveragebetween1978and1982.Thesizeofeachbubblereflectstheshareofaverageemploymentaccountedforbyeachgrowthratebininthoseyears.Thehollowcirclesshowasimilarstatisticfortheyears2016to2021.PanelBshowsthepercentoffirmsacrossthegrowthbinsovertimeratherthanfirmcounts.SeveralpatternsarenotableinFigure
2.
First,inPanelAandBweseethatthemajorityoffirmshavegrowthratesbetween-0.2and0.2,whichroughlycorrespondstoa22%contractionorexpansion
.10
Inparticular,almost29%offirmsinthelate1970shadnearlyzerogrowthrates,whichroseto37%inlate2010s.Therearealsoalargenumberoffirmsthatexit(-2)orenter(2),buttheyaccountformuchlessemploymentthanthosewithinthe-0.2to0.2band.Sincethenumber
8TheTVV/DHSgrowthmeasurecanbetranslatedintopercentdifferencesusingtheimpliedrelation-shipbetweenthetwo.Foragivenxandy,thepercentdifferenceisgivenasgpct=andtheTVV/DHSdifferenceisgtvv/dhs=.Thisimpliesthatgpct=
9ThesebinshavemoredetailsthanareavailableintheBDS-HGtabulations.
10The“kink”inthedistributionat(-1,0.8]and[0.8,1)isdrivenby“lumpiness”inthejointsizeandgrowthratedistribution.Firmswithoneortwoemployeesarequitecommonamongthepopulationoffirms.Ifafirmwithoneemployeeaddstwoadditionalemployeesitsgrowthrateis1,whichisontheexcludededgeofthe[0.8,1)bin.
10
Figure2:DetailedDistributionofFirmGrowthRates,1980vs.2018
(a)LogFirmCounts
(b)PercentofFirms
Source:LBDv202100.
Notes:PanelAshowsaveragecountoffirms(logscaley-axis)acrossgroupingsofyearsbydetailed
growthratebins.NotethatthesebinsaremoredisaggregatethanthoseprovidedintheBDS-HG
tabulations.Solidcirclesrepresentaveragecountsfortheearlierperiod(1978-1982)andhollowcirclesshowaveragecountsforthelaterperiod(2016-2021).PanelBshowstherpercentoffirmsaccountedforbyeachbin.
11
offirmshasrisensignificantlyovertimetheabsolutecountoffirmsthatenterorexit
increasesslightly(PanelA)buttheshareoffirmsthatenterorexithasdeclined(PanelB).Second,thecompressionofthegrowthratedistributionshowninFigure
2
canbeseeninthechangesinthecountsandsharesoffirmsacrossthegrowthratedistribution.Thenumberoffirmsthatwithlittletozerochangeinemploymentrosethemostbetween1980to2018.Thecountoffirmsthatexperiencedsignificantgrowthorcontractiondeclinedsignificantly.
Tofurtherdemonstratethedifferencesbetweenthepercentile-basedandgrowthrate-basedbins,Figure
3
showstheshareoffirmsthatareclassifiedashigh-growthbybothmeasures.PanelAshowsthepercentoffirmsthatareclassifiedashigh-growthusingthegrowthrate-basedmeasures,decomposedintoallfirms(lightgraybars)andjustcon-tinuers(darkgraybars).PanelBdoesthesamebutforthepercentile-basedmeasures.PanelAshowsthatwhereasroughly17%offirmswerehigh-growthin1980,thatsharefellto13%in2020.Incontrast,unsurprisingly,thepercentile-basedbinsshowamuchflatterseriesforbothallhigh-growthfirmsandcontinuerhigh-growthfirms.Asmen-tionedpreviously,thisisdrivenbythefactthatasthegrowthratedistributioncontractssotoodoesthe90thpercentilecutoff.Thetoppercentile-basedbinwillalwayscontainthe10%ofaverageemploymentwiththehighestgrowthratesevenasthegrowthratesofthosefirmsdeclines.Variationintheshareoffirmscoveredbythatbin,then,reflectdifferencesinthesizecompositionofthefastestgrowingfirms.Thepercentile-basedmethodalsocastsawidernetwithmanymorefirmsclassifiedashigh-growththanthe0.8cutoffweuseforthegrowthrate-basedmethod.
Inthenextsectionweprovideapreviewofthesestatistics,highlightinginterestingpatternsinthecompositionofhigh-growthfirmsovertimeintermsoffirmsize,age,industry,andgeography.Allofthefollowingfigurescanbegeneratedusingthenew,publiclyavailableBDS-HGtabulations.
12
Figure3:High-GrowthFirmShares
(a)GrowthRate-basedMethod(b)Percentile-basedMethod
Source:BDS-HG2021.
Notes:Panel(A)showsthepercentoffirmsclassifiedashigh-growthusingthegrowthrate-based
method(≥0.8TVV/DHS)andPanel(B)showsthepercentusingthepercentile-basedmethod(>90thpercentile).Allhigh-growthfirmsasapercentofallfirmsisshowninlightgrayandonlycontinuerhigh-growthfirmsindarkgray.
3TrendsinHigh-GrowthFirmActivity
Anatomyoffirmgrowthovertime
Table
1
showsthecountoffirms,jobcreation,andtotalemploymentassociatedwithallfirmsandtheshareofeachaccountedforbyhigh-growthcontinuingfirms,andhigh-growthentrantsovertime.Alloftheanalysesinthissectionutilizethegrowthrate-basedhighgrowthclassification.Thetotalnumberofnon-farmemployerfirmsrisesfromabout3.6millioninthelate1970storoughly5.3millionby2020.Overthesameperiod,theshareofhigh-growthfirmsfellfromapproximately18.4%to13.1%.Theshareofhigh-growthcontinuersdeclinedbyhalfandhigh-growthentrantsfellbyapproximatelyaquarterovertheperiod.Intermsofemployment,high-growthfirmsaccountforamuchsmallershare,fallingfromabout4%oftotalemploymentinthelate
13
1970stoabout2.2%bytheendoftheperiod.Incontrast,high-growthfirmsaccountforalargebutfallingshareofjobcreation,fromapproximately40.3%inthelate1970sto32.2%inthe2010s
.11
11EntrantsaccountforthebulkofhighgrowthfirmsascanbeseenfromTable
1.
Therefore,withthe
recentsurgeinnewbusinessapplications(Haltiwanger,
2022;
DeckerandHaltiwanger,
2023),theshare
ofhighgrowthfirmsislikelytohaverisensomewhatafterthepandemic.
14
Table1:SummaryStatisticsofHigh-GrowthFirmsintheU.S.
Decade
Firms
Allhigh-growth(%
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年药理学考试的细节试题及答案
- 小学科学与语文交叉试题及答案
- 2024年汽车维修技术规范试题及答案
- 大咯血考试题目及答案
- 宠物营养教育的内容与策略试题及答案
- 智慧解决方案的可靠性评估
- 小学跆拳道课件
- 2024年汽车维修工考试的趋势分析试题及答案
- 2024年汽车美容师成就与挑战考量试题及答案
- 2024年美容师企业文化理解试题及答案
- 旅游概论(刘伟主编)(全国高职高专旅游类“十二五”示范教材) 全套课件(中)
- 2023年中国疾病预防控制中心招聘应届高校毕业生考试真题及答案
- 建设工程检测报告编制导则DB64-T1685-2020
- 项目干系人与干系人管理
- Java基础实践教程-Java编程基础
- 高等职业学校建设标准(2022年版)
- 无人机的生产流程
- 油漆修缮施工方案
- 山东省济南市2022-2023学年高一下学期期中考试语文试题(解析版)
- 奖学金评定模型
- 室外管网工程-工程施工进度计划表
评论
0/150
提交评论