版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共4页2024-2025学年新疆阿克苏第一师第二中学九年级数学第一学期开学考试模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知某一次函数的图象与直线平行,且过点(3,7),那么此一次函数为()A. B. C. D.2、(4分)下列几组数中,不能作为直角三角形三条边长的是()A.3,4,5 B.5,12,13 C.7,24,25 D.9,39,403、(4分)在平面直角坐标系中,平行四边形的顶点的坐标分别是,,点把线段三等分,延长分别交于点,连接,则下列结论:;③四边形的面积为;④,其中正确的有().A. B. C. D.4、(4分)若分式口,的运算结果为x(x≠0),则在“口”中添加的运算符号为()A.+或x B.-或÷ C.+或÷ D.-或x5、(4分)如图,在正方形ABCD的边BC的延长线上取一点E,使CE=AC连接AE交CD于点F,则∠AFC等于()A.112.5° B.120° C.135° D.145°6、(4分)函数中自变量的取值范围是()A. B. C. D.全体实数7、(4分)如图,点、在函数(,且是常数)的图像上,且点在点的左侧过点作轴,垂足为,过点作轴,垂足为,与的交点为,连结、.若和的面积分别为1和4,则的值为()A.4 B. C. D.68、(4分)如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图1.两次旋转的角度分别为()A.45°,90° B.90°,45° C.60°,30° D.30°,60°二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)比较大小:__________.(用不等号连接)10、(4分)如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,BF=6,则四边形ABEF的面积为________11、(4分)某水池容积为300m3,原有水100m3,现以xm3/min的速度匀速向水池中注水,注满水需要ymin,则y关于x的函数表达式为________.12、(4分)使分式x2-1x+1的值为0,这时13、(4分)若函数y=,则当函数值y=8时,自变量x的值等于_____.三、解答题(本大题共5个小题,共48分)14、(12分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?15、(8分)有下列命题①一组对边平行,一组对角相等的四边形是平行四边形.②两组对角分别相等的四边形是平行四边形.③一组对边相等,一组对角相等的四边形是平行四边形.④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.(1)上述四个命题中,是真命题的是(填写序号);(2)请选择一个真命题进行证明.(写出已知、求证,并完成证明)已知:.求证:.证明:16、(8分)因为一次函数与的图象关于轴对称,所以我们定义:函数与互为“镜子”函数.(1)请直接写出函数的“镜子”函数:________.(2)如图,一对“镜子”函数与的图象交于点,分别与轴交于两点,且AO=BO,△ABC的面积为,求这对“镜子”函数的解析式.17、(10分)(1)因式分解:x3﹣8x2+16x.(2)解方程:2﹣=.18、(10分)如图,一次函数的图象与反比例函数()的图象交于A(-3,2),B(n,4)两点.(1)求一次函数与反比例函数的解析式;(2)点C(-1,0)是轴上一点,求△ABC的面积.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)把抛物线y=2(x﹣1)2+1向左平移1个单位,再向上平移2个单位得到的抛物线解析式_____.20、(4分)若数据,,…,的方差为6,则数据,,…,的方差是______.21、(4分)某单位向一所希望小学赠送1080件文具,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设A型包装箱每个可以装件文具,根据题意列方程为.22、(4分)如图,在中,,,,P为BC上一动点,于E,于F,M为EF的中点,则AM的最小为___.23、(4分)如图1,是一个三节段式伸缩晾衣架,如图2,是其衣架侧面示意图,为衣架的墙角固定端,为固定支点,为滑动支点,四边形和四边形是菱形,且,点在上滑动时,衣架外延钢体发生角度形变,其外延长度(点和点间的距离)也随之变化,形成衣架伸缩效果,伸缩衣架为初始状态时,衣架外延长度为,当点向点移动时,外延长度为.(1)则菱形的边长为______.(2)如图3,当时,为对角线(不含点)上任意一点,则的最小值为______.二、解答题(本大题共3个小题,共30分)24、(8分)如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F在DP的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.(1)求证:△AEG是等腰直角三角形;(2)求证:AG+CG=DG.25、(10分)先化简,再求值:,其中,.26、(12分)如图,矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把ΔADE沿AE折叠,当点D的对应点D'落在∠ABC的平分线上时,求DE
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
一次函数的图象与直线y=2x平行,所以k值相等,即k=2,又因该直线过点(3,7),所以就有7=6+b,从而可求出b的值,进而解决问题.【详解】∵一次函数y=kx+b的图象与直线平行,∴k=2,则即一次函数的解析式为y=2x+b.∵直线过点(3,7),∴7=6+b,∴b=1.∴直线l的解析式为y=2x+1.故选B.此题考查一次函数中的直线位置关系,解题关键在于利用待定系数法求解.2、D【解析】
由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方,即可解答.【详解】解:A、32+42=52,能构成直角三角形,不符合题意;
B、122+52=132,能构成直角三角形,不符合题意;
C、72+242=252,能构成直角三角形,不符合题意;
D、92+392≠402,不能构成直角三角形,符合题意;
故选:D.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3、C【解析】
①根据题意证明,得出对应边成比例,再根据把线段三等分,证得,即可证得结论;②延长BC交y轴于H,证明OA≠AB,则∠AOB≠∠EBG,所以△OFD∽△BEG不成立;③利用面积差求得,根据相似三角形面积比等于相似比的平方进行计算并作出判断;④根据勾股定理,计算出OB的长,根据三等分线段OB可得结论.【详解】作AN⊥OB于点N,BM⊥x轴于点M,如图所示:在平行四边形OABC中,点的坐标分别是,,∴又∵把线段三等分,∴又∵,∴∴∴即,①结论正确;∵,∴∴平行四边形OABC不是菱形,∴∵∴∴∴故△OFD和△BEG不相似,故②错误;由①得,点G是AB的中点,∴FG是△OAB的中位线,∴,又∵把线段三等分,∴∵∴∵∴四边形DEGH是梯形∴,故③正确;,故④错误;综上:①③正确,故答案为C.此题主要考查勾股定理、平行四边形的性质、相似三角形的判定与性质、线段的中点,熟练运用,即可解题.4、C【解析】
分别将运算代入,根据分式的运算法则即可求出答案.【详解】综上,在“口”中添加的运算符号为或故选:C.本题考查了分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.5、A【解析】
根据正方形的性质及已知条件可求得∠E的度数,从而根据外角的性质可求得∠AFC的度数.【详解】∵四边形ABCD是正方形,CE=CA,
∴∠ACE=45°+90°=135°,∠E=22.5°,
∴∠AFC=90°+22.5°=112.5°.
故答案为A.本题考查正方形的性质,解题的关键是掌握正方形的性质.6、A【解析】
根据被开方数非负得到不等式x-2≥0,求解即可得到答案.【详解】由二次根式有意义的条件,得x-2≥0,即x≥2,故选A.此题考查函数自变量的取值范围,解题关键在于掌握运算法则.7、D【解析】
设点M(a,0),N(0,b),然后可表示出点A、B、C的坐标,根据的面积为1可求出ab=2,根据的面积为4列方程整理,可求出k.【详解】解:设点M(a,0),N(0,b),∵AM⊥x轴,且点A在反比例函数的图象上,∴点A的坐标为(a,),∵BN⊥y轴,同理可得:B(,b),则点C(a,b),∵S△CMN=NC•MC=ab=1,∴ab=2,∵AC=−b,BC=−a,∴S△ABC=AC•BC=(−b)•(−a)=4,即,∴,解得:k=6或k=−2(舍去),故选:D.本题考查反比例函数图象上点的坐标特征、三角形的面积计算等,解答本题的关键是明确题意,利用三角形的面积列方程求解.8、A【解析】本题考查了旋转的性质、等腰直角三角形的性质.图1中可知旋转角是∠EAB,再结合等腰直角三角形的性质,易求∠EAB;图1中是把图1作为基本图形,那么旋转角就是∠FAB,结合等腰直角三角形的性质易求∠FAB.解:根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图1.故选A.二、填空题(本大题共5个小题,每小题4分,共20分)9、<【解析】
先运用二次根式的性质把根号外的数移到根号内,即可解答【详解】∵=∴<故答案为:<此题考查实数大小比较,难度不大10、24【解析】
首先证明四边形ABEF是菱形,由勾股定理求出OA,得出AE的长,即可解决问题.【详解】连接AE,∵四边形ABCD为平行四边形∴AD∥BC,AD=BC∵BF为∠ABE的平分线,∴∠FBE=∠AFB,∴四边形ABEF为平行四边形∵AB=AF,∴根据勾股定理,即可得到AE=2=8.∴四边形ABEF的面积=×AE×BF=24.本题考查了菱形的性质和判定,平行四边形的性质和判定,勾股定理,等腰三角形的性质,平行线的性质等知识;证明四边形ABEF是菱形是解决问题的关键.11、y=【解析】
先根据条件算出注满容器还需注水200m3,根据注水时间=容积÷注水速度,据此列出函数式即可.【详解】解:容积300m3,原有水100m3,还需注水200m3,由题意得:y=.本题考查了反比例函数的实际应用,理清实际问题中的等量关系是解题的关键.12、1【解析】试题分析:根据题意可知这是分式方程,x2答案为1.考点:分式方程的解法13、或4【解析】【分析】把y=8,分别代入解析式,再解方程,要注意x的取值范围.【详解】由已知可得x2+2=8或2x=8,分别解得x1=(不符合题意舍去),x2=-,x3=4故答案为或4【点睛】本题考核知识点:求函数值.解题关键点:注意x的取值范围.三、解答题(本大题共5个小题,共48分)14、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.【解析】分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.详解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30-a)台,,解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;(3)设总费用为w元,w=9000a+6000(30-a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.15、(1)①②④(2)在四边形ABCD中,∠A=∠C,∠B=∠D;四边形ABCD是平行四边形【解析】
(1)根据平行线的判定定理写出真命题;(2)乙②为例,写出已知、求证.利用四边形的内角和和已知条件中的对角相等得到邻角互补,从而判定两组对边平行,进而证得结论.【详解】(1)①一组对边平行,一组对角相等的四边形是平行四边形.故正确;②两组对角分别相等的四边形是平行四边形.故正确;③一组对边相等,一组对角相等的四边形不一定是平行四边形.故错误;④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.故正确.故答案是:①②④;(2)以②为例:已知:在四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.证明:∵∠1+∠2=180°﹣∠A,∠2+∠1=180°﹣∠C,∠A=∠C,∴∠1+∠2=∠2+∠1.①∵∠ABC=∠ADC,即∠1+∠2=∠2+∠1,②由①②相加、相减得:∠1=∠1,∠2=∠2.∴AB∥CD,AD∥BC.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).故答案是:在四边形ABCD中,∠A=∠C,∠B=∠D;四边形ABCD是平行四边形.本题考查了平行四边形的判定,解题的关键是了解平行四边形的几个判定定理,难度不大.16、(1)y=-3x-2;(2);.【解析】
(1)根据“镜子”函数的定义解答即可;(2)根据“镜子”函数的定义可得与的图象关于轴对称,即可得出AO=BO=CO,设OA=OB=OC=x,根据△ABC的面积为列方程求出x的值,即可得点A、B、C的坐标,利用待定系数法求出k、b的值即可得答案.【详解】(1)∵函数与互为“镜子”函数.∴函数的“镜子”函数是,故答案为:(2)∵函数与是一对“镜子”函数,∴一次函数与的图象关于轴对称,∴BO=CO,∴AO=BO=CO,设,根据题意可得解得∴,将B、A的坐标分别代入中得,解得:∴其函数解析式为,∴其“镜子”函数解析式为.∴这对“镜子”函数的解析式为和.本题考查待定系数法求一次函数解析式,根据关于y轴对称的点的坐标特征得出OA=OB=OC是解题关键.17、(1)x(x﹣4)1;(1)x=【解析】
(1)此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.(1)观察可得最简公分母是(x﹣1),方程两边乘最简公分母,把分式方程转化为整式方程,解方程并检验即得结果.【详解】解:(1)x3﹣8x1+16x=x(x1﹣8x+16)=x(x﹣4)1.(1)1﹣=,方程的两边同乘(x﹣1),得:1(x﹣1)﹣x=﹣1x,解得:x=.检验:把x=代入x﹣1≠2.故原方程的解为:x=.本题考查了多项式的因式分解和分式方程的解法,属于常考题型,熟练掌握上述基本知识是解题关键.18、(1),;(2).【解析】
(1)把A点坐标代入反比例函数的解析式,即可求出反比例函数的解析式,再求出B点坐标,把A、B的坐标代入一次函数的解析式,得出方程组,求出方程组的解,即可得出一次函数的解析式;(2)由面积的和差关系可求解.【详解】(1)∵点A(﹣3,2)在反比例函数y(x<0)的图象上,∴m=﹣3×2=﹣6,∴反比例函数解析式为:y.∵点B(n,4)在反比例函数y(x<0)的图象,∴n,∴点B(,4).∵点A,点B在一次函数y=kx+b的图象上,∴,解得:,∴一次函数解析式为:yx+6;(2)设一次函数与x轴交于点D.在yx+6中,令y=0,解得:x=-4.1.∵C(-1,0),∴CD=3.1,∴S△ABC=S△DBC-S△ADC==.本题考查了一次函数和反比例函数的交点问题的应用,三角形的面积,用待定系数法求函数的图象,主要考查学生的计算能力,题目比较好,难度适中.一、填空题(本大题共5个小题,每小题4分,共20分)19、y=2x2+1.【解析】
先利用顶点式得到抛物线y=2(x﹣1)2+1顶点坐标为(1,1),再根据点平移的坐标特征得到点(1,1)平移后所得对应点的坐标为(0,1),然后根据顶点式写出平移后的抛物线的解析式即可.【详解】抛物线y=2(x﹣1)2+1顶点坐标为(1,1),点(1,1)先向左平移2个单位,再向上平移1个单位后所得对应点的坐标为(0,1),所以平移后的抛物线的解析式为y=2x2+1.故答案是:y=2x2+1.本题考查了抛物线的平移,根据平移规律得到平移后抛物线的顶点坐标为(0,1)是解决问题的关键.20、1.【解析】
根据方差的定义进行求解,方差是用来衡量一组数据波动大小的量,每个数都加2,所以波动不会变,方差不变.【详解】原来的方差,现在的方差==1,方差不变.故答案为:1.此题考查了方差,本题说明了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.21、【解析】
单独使用B型包装箱比单独使用A型包装箱可少用12个;可列等量关系为:所用B型包装箱的数量+12=所用A型包装箱的数量,由此可得到所求的方程【详解】解:根据题意,得:22、2.1.【解析】
解:在△ABC中,AB=6,AC=8,BC=10,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴AM=AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,∴当AP⊥BC时,△ABP∽△CAB,∴∴∴AP最短时,AP=1.8∴当AM最短时,AM==2.1故答案为:2.1.23、25;【解析】
(1)过F作于,根据等腰三角形的性质可得.(2)作等边,等边,得到,得出,而当、、、共线时,最小,再根据,继而求出结果.【详解】(1)如图,过F作于,设,由题意衣架外延长度为得,当时,外延长度为.则.则有,∴,∴.∵∴菱形的边长为25cm故答案为:25cm(2)作等边,等边,∴EM=EP,EH=EQ∴,∴,,∴,当、、、共线时,最小,易知,∵,∴的最小值为.本题考查菱形的性质,勾股定理等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.二、解答题(本大题共3个小题,共30分)24、证明见解析【解析】试题分析:(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024离婚法律文件:标准合同范例版B版
- 2024育儿嫂住家服务合同特殊技能培训范本3篇
- 2024研学合同协议
- 2025年度新型环保材料铺设打地坪合同范本3篇
- 2024聘用退休人员劳务合同范本
- 2025年度专业打印机租赁合同包含打印耗材及维护4篇
- 2025年度智能家居系统安装与维护承包合同8篇
- 2025年度生物科技出借咨询与服务协议4篇
- 2024年高端装备制造与技术转让协议
- 2024版洗车服务单位协议2篇
- 餐饮行业智慧餐厅管理系统方案
- 2025年度生物医药技术研发与许可协议3篇
- 电厂检修安全培训课件
- 殡葬改革课件
- 2024企业答谢晚宴会务合同3篇
- 双方个人协议书模板
- 车站安全管理研究报告
- 玛米亚RB67中文说明书
- 植物和五行关系解说
- 沪教牛津版初中英语七年级下册全套单元测试题
- 因式分解法提公因式法公式法
评论
0/150
提交评论