2024-2025学年四川成都锦通中学高一新生入学分班质量检测数学试题【含答案】_第1页
2024-2025学年四川成都锦通中学高一新生入学分班质量检测数学试题【含答案】_第2页
2024-2025学年四川成都锦通中学高一新生入学分班质量检测数学试题【含答案】_第3页
2024-2025学年四川成都锦通中学高一新生入学分班质量检测数学试题【含答案】_第4页
2024-2025学年四川成都锦通中学高一新生入学分班质量检测数学试题【含答案】_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页2024-2025学年四川成都锦通中学高一新生入学分班质量检测数学试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,点A在双曲线上,点B在双曲线上,且AB∥y轴,C、D在y轴上,若四边形ABCD为矩形,则它的面积为()A.1.5 B.1 C.3 D.22、(4分)如图,在平面直角坐标系中,点A是反函数图像上的点,过点A与x轴垂直的直线交x轴于点B,连结AO,若的面积为3,则k的值为()A.3 B.-3C.6 D.-63、(4分)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC4、(4分)下列三角形纸片,能沿直线剪一刀得到直角梯形的是()A. B. C. D.5、(4分)如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的面积分别为m,n,H为线段DF的中点,则BH的长为()A. B. C. D.6、(4分)将点向左平移4个单位长度得点,则点的坐标是()A. B. C. D.7、(4分)随着私家车的增加,交通也越来越拥挤,通常情况下,某段公路上车辆的行驶速度(千米/时)与路上每百米拥有车的数量x(辆)的关系如图所示,当x≥8时,y与x成反比例函数关系,当车速度低于20千米/时,交通就会拥堵,为避免出现交通拥堵,公路上每百米拥有车的数量x应该满足的范围是()A.x<32 B.x≤32 C.x>32 D.x≥328、(4分)如图,在中,,,,为边上一动点,于点,于点,则的最小值为()A.2.4 B.3 C.4.8 D.5二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)函数中自变量的取值范围是_________________.10、(4分)小明从A地出发匀速走到B地.小明经过(小时)后距离B地(千米)的函数图像如图所示.则A、B两地距离为_________千米.11、(4分)数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们次还原魔方所用时间的平均值与方差:甲乙丙丁(秒)要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择________同学.12、(4分)对于代数式m,n,定义运算“※”:m※n=(mn≠0),例如:4※2=.若(x﹣1)※(x+2)=,则2A﹣B=_____.13、(4分)如图,在中,,,,点在上,以为对角线的所有中,的最小值是____.三、解答题(本大题共5个小题,共48分)14、(12分)在平面直角坐标系中,直线分别交轴,轴于点.(1)当,自变量的取值范围是(直接写出结果);(2)点在直线上.①直接写出的值为;②过点作交轴于点,求直线的解析式.15、(8分)感知:如图①,在正方形中,点在对角线上(不与点、重合),连结、,过点作,交边于点.易知,进而证出.探究:如图②,点在射线上(不与点、重合),连结、,过点作,交的延长线于点.求证:.应用:如图②,若,,则四边形的面积为________.16、(8分)某商店在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件.如果要盈利1200元,那每件降价多少元?17、(10分)某公司计划从本地向甲、乙两地运送海产品共30吨进行销售.本地与甲、乙两地都有铁路和公路相连(如图所示),铁路的单位运价为2元/(吨•千米),公路的单位运价为3元/(吨•千米).(1)公司计划从本地向甲地运输海产品吨,求总费用(元)与的函数关系式;(2)公司要求运到甲地的海产品的重量不少于得到乙地的海产品重量的2倍,当为多少时,总运费最低?最低总运费是多少元?(参考公式:货运运费单位运价运输里程货物重量)18、(10分)为迎接4月23日的世界读书日,某书店制定了活动计划,如表是活动计划的部分信息:(1)杨经理查看计划时发现:A类图书的标价是B类图书标价的1.5倍.若顾客用540元购买图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本.请求出A、B两类图书的标价.(2)经市场调查后,杨经理发现他们高估了“读书日”对图书销售的影响,便调整了销售方案:A类图书每本按标价降低a元()销售,B类图书价格不变.那么书店应如何进货才能获得最大利润.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在四边形ABCD中,AB=CD,要使四边形ABCD是中心对称图形,只需添加一个条件,这个条件可以是▲.(只要填写一种情况)20、(4分)如图,在平面直角坐标系中,一次函数y=kx+b和函数y=4xx>0的图象交于A、B两点.利用函数图象直接写出不等式421、(4分)如图,在平面直角坐标系xOy中,A是双曲线y=1x在第一象限的分支上的一个动点,连接AO并延长与这个双曲线的另一分支交于点B,以AB为底边作等腰直角三角形ABC,使得点(1)点C与原点O的最短距离是________;(2)没点C的坐标为((x,y)(x>0),点A在运动的过程中,y随x的变化而变化,y关于x的函数关系式为________。22、(4分)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是把图1放入长方形内得到的,,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为___.23、(4分)不等式2x≥-4的解集是.二、解答题(本大题共3个小题,共30分)24、(8分)计算或化简:(1)计算:(2)先化简,再求值:,其中.25、(10分)如图所示,,分别表示使用一种白炽灯和一种节能灯的费用(元,分别用y1与y2表示)与照明时间(小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(1)根据图象分别求出,对应的函数(分别用y1与y2表示)关系式;(2)对于白炽灯与节能灯,请问该选择哪一种灯,使用费用会更省?26、(12分)某校要从王同学和李同学中挑选一人参加县知识竞赛在五次选拔测试中他俩的成绩如下表.第1次第2次第3次第4次第5次王同学60751009075李同学70901008080根据上表解答下列问题:(1)完成下表:姓名平均成绩(分)中位数(分)众数(分)方差王同学807575190李同学(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上的成绩视为优秀,则王同学、李同学在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【详解】过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴四边形ABCD为矩形,则它的面积为3−1=2.故选D.本题考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,解本题的关键是正确理解k的几何意义.2、D【解析】

根据三角形ABO的面积为3,得到|k|=6,即可得到结论.【详解】解:∵三角形AOB的面积为3,

∴,

∴|k|=6,

∵k<0,

∴k=-6,

故选:D.本题考查了反比例函数比例系数k的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.3、D【解析】根据平行四边形判定定理进行判断:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D.考点:平行四边形的判定.4、C【解析】

本题就是应用直角梯形的这个性质作答的,直角梯形:有一个角是直角的梯形叫直角梯形.由梯形的定义得到直角梯形必有两个直角.【详解】直角梯形应该有两个角为直角,C中图形已经有一直角,再沿一直角边剪另一直角边的平行线即可.如图:故选:C.此题是考查了直角梯形的性质与三角形的内角和定理的应用,掌握直角梯形的性质是解本题的关键.5、A【解析】

连接BD,BF可证△DBF为直角三角形,在通过直角三角形中斜边上的中线等于斜边的一半即可【详解】如图连接BD,BF;∵四边形ABCD和四边形BEFG都为正方形,AB=m,BE=n,∴∠DBF=90°,DB=,BF=,∴DF=,∵H为DF的中点,∴BH==,故选A熟练掌握直角三角形中斜边上的中线等于斜边的一半和辅助线作法是解决本题的关键6、B【解析】

将点A的横坐标减4,纵坐标不变,即可得出点A′的坐标.【详解】解:将点A(3,3)向左平移4个单位长度得点A′,则点A′的坐标是(3-4,3),即(-1,3),

故选:B.此题考查坐标与图形变化-平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.7、B【解析】

利用已知反比例函数图象过(8,80),得出其函数解析式,再利用y=20时,求出x的最值,进而求出x的取值范围.【详解】解:设反比例函数的解析式为:,则将(8,80),代入,得:k=xy=8×80=640,∴反比例函数的解析式为:故当车速度为20千米/时,则,解得:x=1,故高架桥上每百米拥有车的数量x应该满足的范围是:0<x≤1.故答案为x≤1.此题主要考查了反比例函数的应用,根据题意得出函数解析式是解题关键.8、C【解析】

根据三个角都是直角的四边形是矩形,得四边形EDFB是矩形,根据矩形的对角线相等,得EF=BD,则EF的最小值即为BD的最小值,根据垂线段最短,知:BD的最小值即等于直角三角形ABC斜边上的高.【详解】如图,连接BD.∵在△ABC中,AB=8,BC=6,AC=10,∴AB2+BC2=AC2,即∠ABC=90°.又∵DE⊥AB于点E,DF⊥BC于点F,∴四边形EDFB是矩形,∴EF=BD.∵BD的最小值即为直角三角形ABC斜边上的高,即4.8,∴EF的最小值为4.8,故选C.此题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质,要能够把要求的线段的最小值转换为便于分析其最小值的线段.二、填空题(本大题共5个小题,每小题4分,共20分)9、且【解析】

根据分式和二次根式有意义的条件列不等式组求解即可.【详解】根据分式和二次根式有意义的条件可得解得且故答案为:且.本题考查了函数自变量取值范围的问题,掌握分式和二次根式有意义的条件是解题的关键.10、20【解析】

根据图象可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,据此解答即可.【详解】解:根据题意可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,

所以A、B两地距离为:4×5=20(千米).

故答案为:20本题考查了一次函数的应用,观察函数图象结合数量关系,列式计算是解题的关键.11、丁【解析】

据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:因为乙和丁的方差最小,但丁平均数最小,

所以丁还原魔方用时少又发挥稳定.

故应该选择丁同学.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12、-1【解析】

由可得答案.【详解】由题意,得:故答案为:﹣1.本题主要考查分式的混合运算,解题的关键是掌握分式的加减混合运算顺序和运算法则.13、6【解析】

由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.【详解】∵四边形ADCE是平行四边形,

∴OD=OE,OA=OC.

∴当OD取最小值时,DE线段最短,此时OD⊥BC.

∴OD是△ABC的中位线,∴,,∴,∵在Rt△ABC中,∠B=90°,

,,∴,∴.故答案为:6.本题考查了平行四边形的性质,三角形中位线的性质以及垂线段最短的知识.正确理解DE最小的条件是关键.三、解答题(本大题共5个小题,共48分)14、(1);(2)①1;②【解析】

(1)先利用直线y=3x+3确定A、B的解析式,然后利用一次函数的性质求解;(2))①把C(-,n)代入y=3x+3可求出n的值;②利用两直线垂直,一次项系数互为负倒数可设直线CD的解析式为y=-x+b,然后把C(-,1)代入求出b即可.【详解】解:(1)当y=0时,3x+3=0,解得x=-1,则A(-1,0),当x=0时,y=3x+3=3,则B(0,3),当0<y≤3,自变量x的取值范围是-1≤x<0;(2)①把C(-,n)代入y=3x+3得3×(-)+3=n,解得n=1;②∵AB⊥CD,∴设直线CD的解析式为y=-x+b,把C(-,1)代入得-×(-)+b=1,解得b=,∴直线CD的解析式为y=-x+.本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数的性质.15、探究:见解析;应用:【解析】

探究:由四边形是正方形易证.可得,,由及.可得.可得即可证;应用:连结,可得三角形DEF是等腰三角形,利用勾股定理,分别求DF、FC的长度,再别求和的面积即可.【详解】探究:四边形是正方形,,..又,.,.,..又....应用:(提示:连结,分别求和的面积)连结由=2,∠FED=90°由勾股定理可得:FD=可得:∵CD=1,∠FCD=90°由勾股定理可得:FC=可得:∴本题考查了正方形的性质、三角形全等以及勾股定理的运用,灵活运用正方形性质和利用勾股定理计算长度是解题的关键.16、每件童装应降价1元.【解析】

设每件童装应降价x元,原来平均每天可售出1件,每件盈利40元,后来每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利110元,由此即可列出方程(40-x)(1+2x)=110,解方程就可以求出应降价多少元.【详解】如果每件童装降价4元,那么平均每天就可多售出8件,则每降价1元,多售2件,设降价x元,则多售2x件.设每件童装应降价x元,依题意得(40-x)(1+2x)=110,整理得x2-30x+10=0,解之得x1=10,x2=1,因要减少库存,故x=1.答:每件童装应降价1元.首先找到关键描述语,找到等量关系,然后准确的列出方程是解决问题的关键.最后要判断所求的解是否符合题意,舍去不合题意的解.17、(1);(2)当为1时,总运费最低,最低总运费为2元.【解析】

(1)由公司计划从本地向甲地运输海产品x吨,可知公司从本地向乙地运输海产品(30−x)吨,根据总运费=运往甲地海产品的运费+运往乙地海产品的运费,即可得出W关于x的函数关系式;(2)由运到甲地的海产品的重量不少于运到乙地的海产品重量的2倍,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再根据一次函数的性质即可解决最值问题.【详解】解:(1)∵公司计划从本地向甲地运输海产品x吨,∴公司从本地向乙地运输海产品(30−x)吨.根据题意得:W=10×2x+30×3x+160×2(30−x)+1×3(30−x)=110x+11400(0<x<30);(2)根据题意得:x≥2(30−x),解得:x≥1.在W=110x+11400中,110>0,∴W值随x值的增大而增大,∴当x=1时,W取最小值,最小值为2.答:当x为1时,总运费W最低,最低总运费是2元.本题考查了一次函数的应用、一元一次不等式的应用,解题的关键是:(1)根据数量关系,找出W关于x的函数关系式;(2)利用一次函数的性质解决最值问题.18、(1)A、B两类图书的标价分别是27元、18元;(2)当书店进A类600本,B类200本时,书店获最大利润.【解析】

(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.(2)先设购进A类图书m本,总利润为w元,则购进B类图书为(800-m)本,根据题目中所给的信息列出不等式组,求出m的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.【详解】解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,则可列方程解得:x=18经检验:x=18是原分式方程的解则A、B两类图书的标价分别是27元、18元(2)设A类进货m本,则B类进货(800-m)本,利润为W元.由题知:解得:.W=(27-a-18)m+(18-12)(800-m)=(3-a)m+4800∵∴∴W随m的增大而增大∴当m=600时,W取最大值则当书店进A类600本,B类200本时,书店获最大利润本题考查了一次函数的应用,涉及了分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.一、填空题(本大题共5个小题,每小题4分,共20分)19、AD=BC(答案不唯一).【解析】根据平行四边形是中心对称图形,可以针对平行四边形的各种判定方法,给出相应的条件,得出此四边形是中心对称图形:∵AB=CD,∴当AD=BC时,根据两组对边分别相等的四边形是平行四边形.当AB∥CD时,根据一组对边平行且相等的四边形是平行四边形.当∠B+∠C=180°或∠A+∠D=180°时,四边形ABCD是平行四边形.故此时是中心对称图形.故答案为AD=BC或AB∥CD或∠B+∠C=180°或∠A+∠D=180°等(答案不唯一).20、1<x<4【解析】

不等式4x<kx+b(x>0)的解集实际上是反比例函数值小于一次函数值的自变量【详解】解:不等式4x<kx+b(x>0)的解集实际上是反比例函数值小于一次函数值的自变量x的取值范围,根据图象得:1<x<1.

故答案为:1<x<本题考查一次函数、反比例函数的图象和性质,理清不等式的解集与两个函数的交点坐标之间的关系是解决问题的关键.21、2y=-1【解析】

(1)先根据反比例函数的对称性及等腰直角三角形的性质可得OC=OA=OB,利用勾股定理求出AO的长为m2+1m2(2)先证明△AOD≌△COE可得AD=CE,OD=OE,然后根据点C的坐标表示出A的坐标,再由反比例函数的图象与性质即可求出y与x的函数解析式.【详解】解:(1)连接OC,过点A作AD⊥y轴,如图,,

∵A是双曲线y=1x在第一象限的分支上的一个动点,延长AO交另一分支于点B∴OA=OB,∵△ABC是等腰直角三角形,∴OC=OA=OB,∴当OA的长最短时,OC的长为点C与原点O的最短距离,设A(m,1m∴AD=m,OD=1m∴OA=AD2+OD2∵m-1∴当m-1m2=0∴点C与原点O的最短距离为2.故答案为2;(2)过点C作x轴的垂线,垂足为E,如上图,∴∠ADO=∠CEO=90°,∵△ABC是等腰直角三角形,∴OC=OA=OB,OC⊥AB,∴∠COE+∠AOE=90°,∵∠AOD+∠AOE=90°,∴∠AOD=∠COE,∴△AOD≌△COE(AAS),∴AD=CE,OD=OE,∵点C的坐标为(x,y)(x>0),∴OE=x,CE=-y,∴OD=x,AD=-y,∴点A的坐标为(-y,x),∵A是双曲线y=1∴x=1-y,即∴y关于x的函数关系式为y=-1x(x>0故答案为y=-1x(x>0本题考查了反比例函数的综合应用及等腰直角三角形的性质,全等三角形的判定与性质.利用配方法求出AO的长的最小值是解题的关键.22、110【解析】

延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.【详解】如图,延长AB交KF于点O,延长AC交GM于点P,则四边形OALP是矩形.

∵∠CBF=90°,

∴∠ABC+∠OBF=90°,

又∵直角△ABC中,∠ABC+∠ACB=90°,

∴∠OBF=∠ACB,

在△OBF和△ACB中,

∴△OBF≌△ACB(AAS),

∴AC=OB,

同理:△ACB≌△PGC,

∴PC=AB,

∴OA=AP,

所以,矩形AOLP是正方形,

边长AO=AB+AC=3+4=7,

所以,KL=3+7=10,LM=4+7=11,

因此,矩形KLMJ的面积为10×11=110.本题考查勾股定理,解题的关键是读懂题意,掌握勾股定理.23、x≥-1【解析】分析:已知不等式左右两边同时除以1后,即可求出解集.解答:解:1x≥-4,两边同时除以1得:x≥-1.故答案为x≥-1.二

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论