版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1
独立性检验第3章
统计案例学习目标1.了解2×2列联表的意义.2.了解统计量χ2的意义.3.通过对典型案例分析,了解独立性检验的基本思想和方法.题型探究问题导学内容索引当堂训练问题导学答案可通过表格与图形进行直观分析,也可通过统计分析定量判断.知识点一2×2列联表思考
山东省教育厅大力推行素质教育,增加了高中生的课外活动时间,某校调查了学生的课外活动方式,结果整理成下表:答案
体育文娱合计男生210230440女生60290350合计270520790如何判定“喜欢体育还是文娱与性别是否有联系”?
Ⅱ
类1类2合计Ⅰ类Aab_____类Bcd______合计_________a+b+c+d(1)2×2列联表的定义对于两个研究对象Ⅰ和Ⅱ,Ⅰ有两类取值,即类A和类B;Ⅱ也有两类取值,即类1和类2.我们得到如下列联表所示的抽样数据:梳理a+bc+da+cb+d(2)χ2统计量的求法知识点二独立性检验独立性检验的概念用χ2统计量研究两变量是否有关的方法称为独立性检验.知识点三独立性检验的步骤1.独立性检验的步骤要判断“Ⅰ与Ⅱ有关系”,可按下面的步骤进行:(1)提出假设H0:
;(2)根据2×2列联表及χ2公式,计算
的值;Ⅰ与Ⅱ没有关系χ2表示在H0成立的情况下,事件“
”发生的概率.(3)查对临界值,作出判断.其中临界值如表所示:χ2≥x0P(χ2≥x0)0.500.400.250.150.100.050.0250.0100.0050.001x00.4550.7081.3232.0722.7063.8415.0246.6357.87910.8282.推断依据(1)若χ2>10.828,则有99.9%的把握认为“Ⅰ与Ⅱ有关系”.(2)若χ2>6.635,那么有99%的把握认为“Ⅰ与Ⅱ有关系”.(3)若χ2>2.706,那么有90%的把握认为“Ⅰ与Ⅱ有关系”.(4)若χ2≤2.706,那么就认为没有充分的证据显示“Ⅰ与Ⅱ有关系”,但也不能作出结论“H0成立”,即Ⅰ与Ⅱ没有关系.题型探究例1
在一项有关医疗保健的社会调查中,发现调查的男性为530人,女性为670人,其中男性中喜欢吃甜食的为117人,女性中喜欢吃甜食的为492人,请作出性别与喜欢吃甜食的列联表.解作列联表如下:解答类型一2×2列联表
喜欢甜食不喜欢甜食合计男117413530女492178670合计6095911200分清类别是列联表的作表关键步骤.表中排成两行两列的数据是调查得来的结果.反思与感悟则表中a,b的值分别为____,_____.解析∵a+21=73,∴a=52.又∵a+2=b,∴b=54.跟踪训练1
(1)下面是2×2列联表:答案解析52
54
y1y2合计x1a2173x222527合计b46100(2)某学校对高三学生作一项调查后发现:在平时的模拟考试中,性格内向的426名学生中有332名在考前心情紧张,性格外向的594名学生中有213名在考前心情紧张.作出2×2列联表.解作列联表如下:解答
性格内向性格外向合计考前心情紧张332213545考前心情不紧张94381475合计4265941020例2
对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行3年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下表所示.类型二由χ2进行独立性检验解答
又发作过心脏病未发作过心脏病合计心脏搭桥手术39157196血管清障手术29167196合计68324392试根据上述数据比较这两种手术对病人又发作过心脏病的影响有没有差别.解假设病人又发作过心脏病与做过心脏搭桥手术还是血管清障手术没有关系,由表中数据得a=39,b=157,c=29,d=167,a+b=196,c+d=196,a+c=68,b+d=324,n=392,因为χ2≈1.779<2.706,所以不能得出病人又发作过心脏病与做过心脏搭桥手术还是血管清障手术有关系的结论,即这两种手术对病人又发作过心脏病的影响没有差别.独立性检验的关注点在2×2列联表中,如果两个分类变量没有关系,则应满足ad-bc≈0,因此|ad-bc|越小,关系越弱;|ad-bc|越大,关系越强.反思与感悟跟踪训练2
某省进行高中新课程改革已经四年了,为了解教师对新课程教学模式的使用情况,某一教育机构对某学校的教师关于新课程教学模式的使用情况进行了问卷调查,共调查了50人,其中有老教师20人,青年教师30人.老教师对新课程教学模式赞同的有10人,不赞同的有10人;青年教师对新课程教学模式赞同的有24人,不赞同的有6人.(1)根据以上数据建立一个2×2列联表;解答解2×2列联表如下所示:
赞同不赞同总计老教师101020青年教师24630总计341650(2)判断是否有99%的把握说明对新课程教学模式的赞同情况与教师年龄有关系.解假设“对新课程教学模式的赞同情况与教师年龄无关”.解答≈4.963<6.635,所以没有99%的把握认为对新课程教学模式的赞同情况与教师年龄有关.例3
电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,并根据调查结果绘制了观众日均收看该体育节目时间的频率分布直方图如图.类型三独立性检验的综合应用将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成下面的2×2列联表,并据此资料推断“体育迷”与性别是否有关?解答
非体育迷体育迷合计男
女
1055合计
解由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:
非体育迷体育迷合计男301545女451055合计7525100将2×2列联表中的数据代入公式计算,得因为2.706<3.030<3.841,所以在犯错误的概率不超过0.10的前提下认为“体育迷”与性别有关.(2)将上述调查所得的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的概率分布,均值E(X)和方差V(X).解答P(χ2≥x0)0.100.050.01x02.7063.8416.635解由频率分布直方图知,抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为独立性检验的步骤第一步,假设两个分类变量X与Y无关系;第二步,找相关数据,列出2×2列联表;第三步,由公式χ2=
(其中n=a+b+c+d)计算出χ2的值;第四步,将χ2的值与临界值进行比较,进而作出统计推断.这些临界值,在高考题中常会附在题后,应适时采用.反思与感悟跟踪训练3
某地区甲校高二年级有1100人,乙校高二年级有900人,为了统计两个学校高二年级在学业水平考试中的数学学科成绩,采用分层抽样的方法在两校共抽取了200名学生的数学成绩,如下表:(已知本次测试合格线是50分,两校合格率均为100%)甲校高二年级数学成绩:分组[50,60)[60,70)[70,80)[80,90)[90,100]频数10253530x乙校高二年级数学成绩:分组[50,60)[60,70)[70,80)[80,90)[90,100]频数153025y5(1)计算x,y的值,并分别估计以上两所学校数学成绩的平均分;(精确到1分)解答解依题意知,甲校应抽取110人,乙校应抽取90人,∴x=10,y=15,估计两个学校的平均分,甲校的平均分为乙校的平均分为(2)若数学成绩不低于80分为优秀,低于80分为非优秀,根据以上统计数据填写下面2×2列联表,并回答能否在犯错误的概率不超过0.05的前提下认为“两个学校的数学成绩有差异”?解答
甲校乙校总计优秀
非优秀
总计
又4.714>3.841,故能在犯错误的概率不超过0.05的前提下认为“两个学校的数学成绩有差异”.解数学成绩不低于80分为优秀,低于80分为非优秀,得到2×2列联表如下:
甲校乙校总计优秀402060非优秀7070140总计11090200当堂训练1.在一项打鼾与患心脏病的调查中,共调查了1671人,经过计算χ2=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是______的.(填有关,无关)答案23451有关则空格中的数据分别为:①____;②____;③____;④____.2.为了考察长头发与女性头晕是否有关系,随机抽查301名女性,得到如下所示的列联表,试根据表格中已有数据填空.答案2345186
180
229
301
经常头晕很少头晕合计长发35①121短发37143②合计72③④3.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是_____.(填序号)①若χ2>6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③若从χ2与临界值的比较中得出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.答案23451解析③解析对于①,99%的把握是通过大量的试验得出的结论,这100个吸烟的人中可能全患肺病也可能都不患,是随机的,所以①错;对于②,某人吸烟只能说其患病的可能性较大,并不一定患病;③的解释是正确的.23451
心脏病无心脏病秃发20300不秃发54504.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据如表:答案23451解析0.01根据表中数据得到χ2=
≈15.968,因为χ2>6.635,则断定秃发与心脏病有关系,那么这种判断出错的可能性为_____.解析因为χ2>6.635,所以有99%的把握说秃发与患心脏病有关,故这种判断出错的可能性有1-0.99=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年版中国果品批发市场竞争策略及投资产销状况分析报告
- 2024-2030年版中国婴幼儿服装行业市场销售模式及发展前景展望报告
- 2024-2030年新版中国稀土合金材料项目可行性研究报告(甲级资质)
- 2024-2030年新版中国液化石油气钢瓶项目可行性研究报告
- 2024-2030年新版中国塑钢爬梯项目可行性研究报告
- 2024-2030年新版中国中控百叶帘项目可行性研究报告
- 2024-2030年带式定量给料机搬迁改造项目可行性研究报告
- 2024-2030年商务酒店产业市场深度分析及前景趋势与投资研究报告
- 2024-2030年冶金桥式起重机搬迁改造项目可行性研究报告
- 2024-2030年全球及中国门廊灯行业竞争趋势及销售渠道策略报告
- 医院卒中中心建设各种制度、流程汇编
- 邮储高级练习卷三(第12章-第17章)附有答案
- 重庆市江北区2023-2024学年六年级下学期期末考试数学试题
- 军队文职聘用合同管理规定
- 2024年贵州省安顺市西秀区小升初语文试卷
- 2024-2029年中国儿童牙冠行业市场现状分析及竞争格局与投资发展研究报告
- 新时代铁路发展面对面全文内容
- 人工智能与语文阅读理解教学
- 科学素养培育及提升-知到答案、智慧树答案
- 快递主管岗位职责
- 医疗差错、纠纷、事故登记表
评论
0/150
提交评论