华师大版九年级上册数学期末考试试卷及答案_第1页
华师大版九年级上册数学期末考试试卷及答案_第2页
华师大版九年级上册数学期末考试试卷及答案_第3页
华师大版九年级上册数学期末考试试卷及答案_第4页
华师大版九年级上册数学期末考试试卷及答案_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

华师大版九年级上册数学期末考试试题一、选择题。(每小题只有一个正确答案)1.式子在实数范围内有意义,则x的取值范围是()A.B.C.D.2.甲袋中装有形状、大小与质地都相同的红球3个,乙袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A.从甲袋中随机摸出1个球,是黄球B.从甲袋中随机摸出1个球,是红球C.从乙袋中随机摸出1个球,是红球或黄球D.从乙袋中随机摸出1个球,是黄球3.抛物线y=﹣(x+2)2+5的顶点坐标是()A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(2,﹣5)4.关于的一元二次方程x2﹣2+k=0有两个相等的实数根,则k的值为()A.1B.﹣1C.2D.﹣25.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.按如下方法,将△ABC的三边缩小为原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2④△ABC与△DEF的面积比为4:1.A.1B.2C.3D.47.如图所示,河堤横断面迎水坡AB的坡比是1:3,坡高BC=20,则坡面AB的长度()A.60B.100C.50D.208.在二次函数的图像中,若随的增大而增大,则的取值范围是A.B.C.D.9.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为A.(3,2)B.(3,1)C.(2,2)D.(4,2)10.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是()A.B.C.D.二、填空题11.一元二次方程的解为________.12.已知抛物线y=2x2﹣5x+3与y轴的交点坐标是_____.13.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是_____.14.在平面直角坐标系xOy中,过点P(0,2)作直线l:y=x+b(b为常数且b<2)的垂线,垂足为点Q,则tan∠OPQ=_____.15.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的F处,连接FC,当△BCF为等腰三角形时,AE的长为_____.三、解答题16.先化简,再求值:÷(1+x+),其中x=tan60°﹣tan45°.17.文化是一个国家、一个民族的灵魂,近年来,央视推出《中国诗词大会》、《中国成语大会》、《朗读者》、《经曲咏流传》等一系列文化栏目.为了解学生对这些栏目的喜爱情况,某学校组织学生会成员随机抽取了部分学生进行调查,被调查的学生必须从《经曲咏流传》(记为A)、《中国诗词大会》(记为B)、《中国成语大会》(记为C)、《朗读者》(记为D)中选择自己最喜爱的一个栏目,也可以不选以上四类而写出一个自己最喜爱的其他文化栏目(这时记为E).根据调查结果绘制成如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:(1)在这项调查中,共调查了名学生;(2)最喜爱《朗读者》的学生有名;(3)扇形统计图中“B”所在扇形圆心角的度数为;(4)选择“E”的学生中有2名女生,其余为男生,现从选择“E”的学生中随机选出两名学生参加座谈,请直接写出:刚好选到一名男生和一名女生的概率为.18.已知二次函数y=ax2+bx+4经过点(2,0)和(﹣2,12).(1)求该二次函数解析式;(2)写出它的图象的开口方向、顶点坐标、对称轴;(3)画出函数的大致图象.19.如图,在△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A逆时针旋转()得到△ADE,连接BD、CE相交于点F.(1)求证;(2)若,求∠ACE的度数;(3)若四边形ABFE为菱形,直接写出的值.20.小明想要测量一棵树DE的高度,他在A处测得树顶端E的仰角为30°,他走下台阶到达C处,测得树的顶端E的仰角是60°.已知A点离地面的高度AB=2米,∠BCA=30°,且B,C,D三点在同一直线上.求树DE的高度;21.某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与每天销售量y(件)之间的关系如下表.x(元/件)15182022…y(件)250220200180…(1)直接写出:y与x之间的函数关系;(2)按照这样的销售规律,设每天销售利润为w(元)即(销售单价﹣成本价)x每天销售量;求出w(元)与销售单价x(元/件)之间的函数关系;(3)销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?22.在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.(1)直接写出:b的值为;c的值为;点A的坐标为;(2)点M是线段BC上的一动点,动点D在直线BC下方的二次函数图象上.设点D的横坐标为m.①如图1,过点D作DM⊥BC于点M,求线段DM关于m的函数关系式,并求线段DM的最大值;②若△CDM为等腰直角三角形,直接写出点M的坐标.23.如图,在△ABC中,AD是边BC上的中线,∠BAD=∠CAD,CE∥AD,CE交BA的延长线于点E,BC=8,AD=3(1)求CE的长;(2)求证:△ABC为等腰三角形.24.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D,E两点分别在AC,BC上,且DE∥AB,将△CDE绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现:当α=0°时,的值为;(2)拓展探究:当0°≤α<360°时,若△EDC旋转到如图2的情况时,求出的值;(3)问题解决:当△EDC旋转至A,B,E三点共线时,若设CE=5,AC=4,直接写出线段BE的长.参考答案1.D【分析】利用二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,

解得:x≥1,

故选:D.【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2.D【解析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A.从甲袋中随机摸出1个球,是黄球是不可能事件;B.从甲袋中随机摸出1个球,是红球是必然事件;C.从乙袋中随机摸出1个球,是红球或黄球是必然事件;D.从乙袋中随机摸出1个球,是黄球是随机事件.故选:D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.B【分析】根据题目中的函数解析式,可以直接写出该抛物线的顶点坐.【详解】∵抛物线y=﹣(x+2)2+5,∴该抛物线的顶点坐标为(﹣2,5).故选:B.【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,由函数的顶点式可以直接写出顶点坐标.4.A【分析】关于x的一元二次方程x²+2x+k=0有两个相等的实数根,可知其判别式为0,据此列出关于k的不等式,解答即可.【详解】根据一元二次方程根与判别式的关系,要使得x2﹣2+k=0有两个相等实根,只需要△=(-2)²-4k=0,解得k=1.故本题正确答案为A.【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.A【详解】试题解析:∵cosA=,tanB=,∴∠A=45°,∠B=60°.∴∠C=180°-45°-60°=75°.∴△ABC为锐角三角形.故选A.6.C【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.7.D【分析】在Rt△ABC中,已知坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.【详解】Rt△ABC中,BC=20,tanA=1:3;∴AC=BC÷tanA=60,∴AB20.故选:D.【点睛】本题考查了学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.8.A【详解】∵二次函数的开口向下,∴所以在对称轴的左侧y随x的增大而增大.∵二次函数的对称轴是,∴.故选A.9.A【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选A.10.C【分析】根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=-x2+x,对照四个选项即可得出.【详解】∵△ABC为等边三角形,

∴∠B=∠C=60°,BC=AB=a,PC=a-x.

∵∠APD=60°,∠B=60°,

∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,

∴∠BAP=∠CPD,

∴△ABP∽△PCD,∴,即,∴y=-x2+x.故选C.【点睛】考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-x2+x是解题的关键.11.,【解析】利用“十字相乘法”对等式的左边进行因式分解.【详解】由原方程,得,则或,解得,.故答案为:,.【点睛】本题考查了解一元二次方程-因式分解法.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).12.(0,3)【分析】要求抛物线与y轴的交点,即令x=0,解方程即可.【详解】解:令x=0,则y=3,即抛物线y=2x2-5x+3与y轴的交点坐标是(0,3).故答案为(0,3).【点睛】本题考查了抛物线与y轴的交点.求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与y轴的交点坐标,令x=0,即可求得交点纵坐标.13.【分析】列表得出所有等可能结果,从中找到两个球颜色相同的结果数,利用概率公式计算可得.【详解】解:列表如下:黄红红红(黄,红)(红,红)(红,红)红(黄,红)(红,红)(红,红)白(黄,白)(红,白)(红,白)由表知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果,所以摸出的两个球颜色相同的概率为,故答案为.【点睛】本题考查了列表法与树状图的知识,解题的关键是能够用列表或列树状图将所有等可能的结果列举出来,难度不大.14.【解析】试题分析:如图,设直线l与坐标轴的交点分别为A、B,∵∠AOB=∠PQB=90°,∠ABO=∠PBQ,∴∠OAB=∠OPQ,由直线的斜率可知:tan∠OAB=,∴tan∠OPQ=;故答案为.考点:1.一次函数图象上点的坐标特征;2.解直角三角形.15.2或或.【分析】由勾股定理求出AB,设AE=x,则EF=x,BF=10﹣2x;分三种情况讨论:①当BF=BC时,列出方程,解方程即可;②当BF=CF时,F在BC的垂直平分线上,得出AF=BF,列出方程,解方程即可;③当CF=BC时,作CG⊥AB于G,则BG=FGBF,由射影定理求出BG,再解方程即可.【详解】由翻折变换的性质得:AE=EF.∵∠ACB=90°,AC=8,BC=6,∴AB10.设AE=x,则EF=x,BF=10﹣2x.分三种情况讨论:①当BF=BC时,10﹣2x=6,解得:x=2,∴AE=2;②当BF=CF时.∵BF=CF,∴∠B=∠FCB.∵∠A+∠B=90°,∠FCA+∠FCB=90°,∴∠A=∠FCA,∴AF=FC.∵BF=FC,∴AF=BF,∴x+x=10﹣2x,解得:x,∴AE;③当CF=BC时,作CG⊥AB于G,如图所示:则BG=FGBF.根据射影定理得:BC2=BG•AB,∴BG,即(10﹣2x),解得:x,∴AE;综上所述:当△BCF为等腰三角形时,AE的长为:2或或.故答案为:2或或.【点睛】本题考查了翻折变换的性质、勾股定理、射影定理、等腰三角形的性质;本题有一定难度,需要进行分类讨论.16.,.【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【详解】原式•.当x=tan60°﹣tan45°1时,原式.【点睛】本题考查了分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.(1)150;(2)75;(3)36°;(4).【分析】(1)由A栏目人数及其所占百分比可得总人数;(2)总人数乘以D栏目所占百分比求得其人数;(3)总人数减去其他栏目人数求得B的人数,再用360°乘以B栏目所占的百分比即可;(4)列表得出所有等可能结果,然后利用概率的计算公式即可求解.【详解】(1)共调查的总数是:30÷20%=150(名).故答案为:150;(2)最喜爱《朗读者》的学生有150×50%=75(名).故答案为:75;(3)扇形统计图中“B”所在扇形圆心角的度数为360°36°.故答案为:36°;(4)记选择“E”的同学中的2名女生分别为N1,N2,4名男生分别为M1,M2,M3,M4,列表如下:∵共有30种等可能的结果,其中,刚好选到一名男生和一名女生的有16种情况,∴刚好选到一名男生和一名女生的概率为.故答案为:.【点睛】本题考查了读频数分布直方图的能力和利用统计图获取信息的能力以及求随机事件的概率;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.(1);(2)向上,(3,﹣),直线x=3;(3)详见解析.【分析】(1)直接利用待定系数法即可得到抛物线解析式;(2)根据二次函数的性质求解;(3)利用描点法画函数图象.【详解】(1)由题意得:解得:,∴抛物线解析式为:;(2)∵(x﹣3)2,∴图象的开口方向向上,顶点为,对称轴为直线x=3.故答案为:向上,(3,),直线x=3;(3)如图;.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象与性质.19.(1)见解析;(2)50°;(3)100°【分析】(1)根据旋转角求出∠BAD=∠CAE,然后利用“边角边”证明△ABD和△ACE全等;(2)根据等腰三角形的性质得到结论;(3)根据等腰三角形的性质得到∠ABD=∠ADB=∠ACE=∠AEC=90°﹣,若使四边形ABFE是菱形,只要四边形ABFE是平行四边形即可,得到∠BAE+∠ABD=180°,于是得到结论.【详解】(1)证明:∵将△ABC绕点A按逆时针方向旋转α得到△ADE,∴∠BAD=∠CAE=α,AB=AD,AC=AE,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵∠CAE=α=80°,AC=AE,∴∠ACE=(180°﹣∠CAE)=(180°﹣80°)=50°;(3)解:∵∠BAD=∠CAE=α,AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=90°﹣,∵AB=AE,∴若使四边形ABFE是菱形,只要四边形ABFE是平行四边形即可,∵∠ABD=∠AEC,∴只要∠ABD+∠BAE=180°,则AEBF,ABEF,即(90°﹣)+(α+40°)=180°,解得:α=100°,即当α=100°时,四边形ABFE是菱形.【点睛】本题考查了四边形的综合题,全等三角形的判定和性质,菱形的判定,等腰三角形的性质,正确的识别图形是解题的关键.20.树DE的高度为6米.【分析】先根据∠ACB=30°求出AC=4米,再求出∠EAC=60°,解Rt△ACE得EC的长,依据∠DCE=60°,解Rt△CDE得的长.【详解】∵∠B=90°,∠ACB=30°,AB=2,∴AC=2AB=4.又∵∠DCE=60°,∴∠ACE=90°.∵AF∥BD,∴∠CAF=∠ACB=30°,∴∠EAC=60°.在Rt△ACE中,∵,∴,在Rt△DCE中∵∠DCE=60°,,∴.答:树DE的高度为6米.【点睛】本题考查了解直角三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形.21.(1)y=﹣10x+400;(2)w=﹣10x2+500x﹣4000;(3)销售单价定为25元时,每天销售利润最大,最大销售利润2250元.【分析】(1)根据题意得出日销售量y是销售价x的一次函数,再利用待定系数法求出即可;(2)根据销量×每件利润=总利润,即可得出所获利润W为二次函数;(3)将(2)中的二次函数化为顶点式,确定最值即可.【详解】(1)由图表中数据得出y与x是一次函数关系,设解析式为:y=kx+b,则,解得:.故y与x之间的函数关系式为:y=﹣10x+400.故答案为:y=﹣10x+400.(2)w与x的函数关系式为:w=(x﹣10)y=(x﹣10)(﹣10x+400)=﹣10x2+500x﹣4000;(3)w=﹣10x2+500x﹣4000=﹣10(x﹣25)2+2250,因为﹣10<0,所以当x=25时,w有最大值.w最大值为2250,答:销售单价定为25元时,每天销售利润最大,最大销售利润2250元.【点睛】本题考查了二次函数的应用及二次函数最大值求法,难度适中,解答本题的关键是根据题意,逐步求解,由易到难,搞清楚这两个函数之间的联系.22.(1)﹣;﹣2;(﹣1,0);(2)①MD=(﹣m2+4m),DM最大值;②(,﹣)或(,﹣).【分析】(1)直线yx﹣2与x轴交于点B,与y轴交于点C,则点B、C的坐标为:(4,0)、(0,﹣2),即可求解;(2)①MD=DHcos∠MDH(m﹣2m2m+2)(﹣m2+4m),即可求解;②分∠CDM=90、∠MDC=90°、∠MCD=90°三种情况,分别求解即可.【详解】(1)直线yx﹣2与x轴交于点B,与y轴交于点C,则点B、C的坐标为:(4,0)、(0,﹣2).将点B、C的坐标代入抛物线表达式并解得:b,c=﹣2.故抛物线的表达式为:…①,点A(﹣1,0).故答案为:,﹣2,(﹣1,0);(2)①如图1,过点D作y轴的平行线交BC于点H交x轴于点E.设点D(m,m2m﹣2),点H(m,m﹣2).∵∠MDH+∠MHD=90°,∠OBC+∠BHE=90°,∠MHD=∠EHB,∴∠MDH=∠OBC=α.∵OC=2,OB=4,∴BC=,∴cos∠OBC=,则cos;MD=DHcos∠MDH(m﹣2m2m+2)(﹣m2+4m).∵0,故DM有最大值;②设点M、D的坐标分别为:(s,s﹣2),(m,n),nm2m﹣2;分三种情况讨论:(Ⅰ)当∠CDM=90°时,如图2,过点M作x轴的平行线交过点D与x轴的垂线于点F,交y轴于点E.易证△MEC≌△DFM,∴ME=FD,MF=CE,即s﹣2﹣2=m﹣s,ss﹣2﹣n,解得:s,或s=8(舍去).故点M(,);(Ⅱ)当∠MDC=90°时,如图3,过D作直线DE⊥y轴于E,MF⊥DE于F.同理可得:s,或s=0(舍去).故点M(,)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论