中考各省压轴之三角形的存在性问题(10考点25题)(老师版)_第1页
中考各省压轴之三角形的存在性问题(10考点25题)(老师版)_第2页
中考各省压轴之三角形的存在性问题(10考点25题)(老师版)_第3页
中考各省压轴之三角形的存在性问题(10考点25题)(老师版)_第4页
中考各省压轴之三角形的存在性问题(10考点25题)(老师版)_第5页
已阅读5页,还剩63页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考各省压轴之三角形的存在性问题(10考点25题)

一.一次函数综合题(共1小题)1.如图,在平面直角坐标系中,一次函数y=﹣x+n图象与正比例函数y=2x的图象交于点A(m,4).(1)求m,n的值;(2)设一次函数y=﹣x+n的图象与x轴交于点B,与y轴交于点C,求点B,点C的坐标;(3)直接写出使函数y=﹣x+n的值小于函数y=2x的值的自变量x的取值范围.(4)在x轴上是否存在点P使△PAB为等腰三角形,若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】(1)m=2,n=6;(2)点B坐标为(6,0),点C坐标为(0,6);(3)x>2;(4)点P坐标为(6+4,0)或(6﹣4,0)或(﹣2,0)或(2,0).【解答】解:(1)正比例函数y=2x的图象过点A(m,4).∴4=2m,∴m=2.又∵一次函数y=﹣x+n的图象过点A(2,4).∴4=﹣2+n,∴n=6.(2)一次函数y=﹣x+n的图象与x轴交于点B,∴令y=0,则0=﹣x+6∴x=6,∴点B坐标为(6,0),令x=0,则y=6,∴点C坐标为(0,6);(3)由图象可知:x>2;(4)∵点A(2,4),∴AB==4,当AB=BP=4时,则点P(6+4,0)或(6﹣4,0);当AB=AP时,如图,过点A作AE⊥BO于E,则点E(2,0),∵AB=AP,AE⊥BO,∴PE=BE=4,∴点P(﹣2,0);当PA=PB时,∴∠PBA=∠PAB=45°,∴∠APB=90°,∴点P(2,0),综上所述:点P坐标为(6+4,0)或(6﹣4,0)或(﹣2,0)或(2,0).二.待定系数法求反比例函数解析式(共1小题)2.如图,过原点O的直线与反比例函数(k≠0)的图象交于A(1,2),B两点,一次函数y2=mx+b(m≠0)的图象过点A与反比例函数交于另一点C(2,n).(1)求反比例函数的解析式;当y1>y2时,根据图象直接写出x的取值范围;(2)在y轴上是否存在点M,使得△COM为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.【答案】(1)反比例函数的解析式为,x的取值范围是:0<x<1或x>2;(2)点M的坐标为(0,)或(0,)或(0,2)或(0,).【解答】解:(1)由题知,将A点坐标代入反比例函数解析式得,k=1×2=2,所以反比例函数的解析式为.由函数图象可知,在直线x=0和x=1之间的部分及直线x=2右侧的部分,反比例函数y1的图象在一次函数y2的图象的上方,即y1>y2.所以x的取值范围是:0<x<1或x>2.(2)将x=2代入反比例函数解析式得,y=1,所以点C的坐标为(2,1).则OC=.当OC=OM时,OM=,所以点M坐标为(0,)或(0,﹣).当CM=CO时,点C在OM的垂直平分线上,又因为点C坐标为(2,1),所以点M坐标为(0,2).当MO=MC时,点M在OC的垂直平分线上,过点C作CN⊥y轴于点N,令MO=m,则MC=m,MN=m﹣1,在Rt△CMN中,CN2+MN2=MC2,即22+(m﹣1)2=m2,解得m=.所以点M的坐标为(0,).综上所述:点M的坐标为(0,)或(0,)或(0,2)或(0,).三.二次函数综合题(共10小题)3.如图,抛物线y=ax2+bx+5与x轴交于A,B两点,与y轴交于点C,AB=4.抛物线的对称轴x=3与经过点A的直线y=kx﹣1交于点D,与x轴交于点E.(1)求直线AD及抛物线的表达式;(2)在抛物线上是否存在点M,使得△ADM是以AD为直角边的直角三角形?若存在,求出所有点M的坐标;若不存在,请说明理由;(3)以点B为圆心,画半径为2的圆,点P为⊙B上一个动点,请求出PC+PA的最小值.【答案】(1)直线AD的解析式为y=x﹣1;抛物线解析式为y=x2﹣6x+5;(2)存在,点M的坐标为(4,﹣3)或(0,5)或(5,0);(3).【解答】(1)解:∵抛物线的对称轴x=3,AB=4,∴A(1,0),B(5,0),将A(1,0)代入直线y=kx﹣1,得k﹣1=0,解得k=1,∴直线AD的解析式为y=x﹣1;将A(1,0),B(5,0)代入y=ax2+bx+5,得,解得,∴抛物线的解析式为y=x2﹣6x+5;(2)存在点M,∵直线AD的解析式为y=x﹣1,抛物线对称轴x=3与x轴交于点E,∴当x=3时,y=x﹣1=2,∴D(3,2),①当∠DAM=90°时,设直线AM的解析式为y=﹣x+c,将点A坐标代入,得﹣1+c=0,解得c=1,∴直线AM的解析式为y=﹣x+1,解方程组,得或,∴点M的坐标为(4,﹣3);②当∠ADM=90°时,设直线DM的解析式为y=﹣x+d,将D(3,2)代入,得﹣3+d=2,解得d=5,∴直线DM的解析式为y=﹣x+5,解方程组,解得或,∴点M的坐标为(0,5)或(5,0),综上,点M的坐标为(4,﹣3)或(0,5)或(5,0);(3)如图,在AB上取点F,使BF=1,连接CF,∵PB=2,∴,∵,∴,又∵∠PBF=∠ABP,∴△PBF∽△ABP,∴,即PF=PA,∴PC+PA=PC+PF≥CF,∴当点C、P、F三点共线时,PC+PA的值最小,即为线段CF的长,∵OC=5,OF=OB﹣1=5﹣1=4,∴CF=,∴PC+PA的最小值为.4.如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.【答案】(1)y=x2﹣5x+4;(2)四边形OCPQ为平行四边形,理由见解答;(3)点F的坐标为(0,1)或(0,﹣1)或(0,).【解答】解:(1)由题意得:,解得,故抛物线的表达式为y=x2﹣5x+4①;(2)对于y=x2﹣5x+4,令y=x2﹣5x+4=0,解得x=1或4,令x=0,则y=4,故点B的坐标为(4,0),点C(0,4),设直线BC的表达式为y=kx+t,则,解得,故直线BC的表达式为y=﹣x+4,设点P的坐标为(x,﹣x+4),则点Q的坐标为(x,x2﹣5x+4),则PQ=(﹣x+4)﹣(x2﹣5x+4)=﹣x2+4x,∵﹣1<0,故PQ有最大值,当x=2时,PQ的最大值为4=CO,此时点Q的坐标为(2,﹣2);∵PQ=CO,PQ∥OC,故四边形OCPQ为平行四边形;(3)∵D是OC的中点,则点D(0,2),由点D、Q的坐标,同理可得,直线DQ的表达式为y=﹣2x+2,过点Q作QH⊥x轴于点H,则QH∥CO,故∠AQH=∠ODA,而∠DQE=2∠ODQ.∴∠HQA=∠HQE,则直线AQ和直线QE关于直线QH对称,故设直线QE的表达式为y=2x+r,将点Q的坐标代入上式并解得r=﹣6,故直线QE的表达式为y=2x﹣6②,联立①②并解得(不合题意的值已舍去),故点E的坐标为(5,4),设点F的坐标为(0,m),由点B、E的坐标得:BE2=(5﹣4)2+(4﹣0)2=17,同理可得,当BE=BF时,即16+m2=17,解得m=±1;当BE=EF时,即25+(m﹣4)2=17,方程无解;当BF=EF时,即16+m2=25+(m﹣4)2,解得m=;故点F的坐标为(0,1)或(0,﹣1)或(0,).5.定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图①,抛物线C1:y=x2+2x﹣3与抛物线C2:y=ax2+2ax+c组成一个开口向上的“月牙线”,抛物线C1和抛物线C2与x轴有着相同的交点A(﹣3,0)、B(点B在点A右侧),与y轴的交点分别为G、H(0,﹣1).(1)求抛物线C2的解析式和点G的坐标.(2)点M是x轴下方抛物线C1上的点,过点M作MN⊥x轴于点N,交抛物线C2于点D,求线段MN与线段DM的长度的比值.(3)如图②,点E是点H关于抛物线对称轴的对称点,连接EG,在x轴上是否存在点F,使得△EFG是以EG为腰的等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.【答案】(1)y=x2+x﹣1,G(0,﹣3);(2);(3)存在,(﹣2,0)或(﹣﹣2,0).【解答】解:(1)将A(﹣3,0)、H(0,﹣1)代入y=ax2+2ax+c中,∴,解得,∴y=x2+x﹣1,在y=x2+2x﹣3中,令x=0,则y=﹣3,∴G(0,﹣3);(2)设M(t,t2+2t﹣3),则D(t,t2+t﹣1),N(t,0),∴NM=﹣t2﹣2t+3,DM=t2+t﹣1﹣(t2+2t﹣3)=﹣t2﹣t+2,∴==;(3)存在点F,使得△EFG是以EG为腰的等腰三角形,理由如下:由(1)可得y=x2+2x﹣3的对称轴为直线x=﹣1,∵E点与H点关于对称轴x=﹣1对称,∴E(﹣2,﹣1),设F(x,0),①当EG=EF时,∵G(0,﹣3),∴EG=2,∴2=,解得x=﹣2或x=﹣﹣2,∴F(﹣2,0)或(﹣﹣2,0);②当EG=FG时,2=,此时x无实数根;综上所述:F点坐标为(﹣2,0)或(﹣﹣2,0).6.如图1,已知抛物线y=ax2﹣4ax+c的图象经过点A(1,0),B(m,0),C(0,﹣3),过点C作CD∥x轴交抛物线于点D,点P是抛物线上的一个动点,连接PD,设点P的横坐标为n.(1)填空:m=3,a=﹣1,c=﹣3;(2)在图1中,若点P在x轴上方的抛物线上运动,连接OP,当四边形OCDP面积最大时,求n的值;(3)如图2,若点Q在抛物线的对称轴l上,连接PQ、DQ,是否存在点P使△PDQ为等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)3,﹣1,﹣3;(2)n的值为;(3)点P的坐标是(,)或(,)或(2+,﹣1)或(2﹣,﹣1)或(2+,﹣5)或(2﹣,﹣5)或(0,﹣3)或(5,﹣8)(,)或(,).【解答】解:(1)将点A(1,0),C(0,﹣3)代入y=ax2﹣4ax+c得,,解得,∴抛物线的解析式:y=﹣x2+4x﹣3,y=0,则0=﹣x2+4x﹣3,解得x=3或1,∴B(3,0),∴m=3,故答案为:3,﹣1,﹣3;(2)连接PC,∵C(0,﹣3),CD∥x轴交抛物线于点D,∴点D的纵坐标为﹣3,﹣3=﹣x2+4x﹣3,解得x=0或4,∴D(4,﹣3),∵点P的横坐标为n,∴P(n,﹣n2+4n﹣3),∴S四边形OCDP=S△COP+S△PCD,=×3n+×4(﹣n2+4n﹣3+3)=﹣2n2+n,=﹣2(n﹣)2+,∵﹣2<0,∴当n=时,S四边形OCDP有最大值,∴n的值为;(3)∵y=﹣x2+4x﹣3,∴抛物线的对称轴为直线x=﹣=2,∴点Q的横坐标为2,分三种情况:①当P为直角顶点时,PQ=PD,如图2,过P作MN∥y轴,过Q作QM⊥MN于M,过D作DN⊥MN于N,∴∠PMQ=∠DNP=90°,∵△PQD是等腰直角三角形,且PQ=PD,∠DPQ=90°,∴∠MPQ+∠PQM=∠MPQ+∠DPN=90°,∴∠PQM=∠DPN,∴△PQM≌△DPN(AAS),∴QM=PN,∵P(n,﹣n2+4n﹣3),D(4,﹣3),点Q的横坐标为2,∴PN=QM=|2﹣n|,∴3﹣|2﹣n|=n2﹣4n+3,解得n=或或∴点P的坐标为(,)或(,)或(,)或(,);②当D为直角顶点时,DQ=PD,如图3,过D作MN∥y轴,过P作PM⊥MN于M,过Q作QN⊥MN于N,同理△PDM≌△DQN(AAS),∴DM=QN,∵P(n,﹣n2+4n﹣3),D(4,﹣3),点Q的横坐标为2,∴DM=QN=4﹣2=2,∴3﹣2=n2﹣4n+3,解得n=2+或2﹣,∴点P的坐标为(2+,﹣1)或(2﹣,﹣1);如图5,同理△PDM≌△DQN(AAS),∴PM=DN,DM=QN,∵P(n,﹣n2+4n﹣3),D(4,﹣3),点Q的横坐标为2,∴DM=QN=4﹣2=2,∴2=n2﹣4n+3﹣3,解得n=2+或2﹣,∴点P的坐标为(2+,﹣5)或(2﹣,﹣5);③当Q为直角顶点时,DQ=PQ,如图4,过P作PM⊥l于M,过D作DN⊥l于N,同理△PQM≌△QDN(AAS),∴QM=DN,PM=QN,∵P(n,﹣n2+4n﹣3),D(4,﹣3),点Q的横坐标为2,∴DN=QM=4﹣2=2,PM=QN=|2﹣n|,∴MN=QM﹣QN=2﹣|2﹣n|,∴2﹣|2﹣n|=n2﹣4n+3﹣3,解得n=0或5或3,∴点P的坐标为(0,﹣3)或(5,﹣8)或(3,0);综上所述,点P的坐标是(,)或(,)或(2+,﹣1)或(2﹣,﹣1)或(2+,﹣5)或(2﹣,﹣5)或(0,﹣3)或(5,﹣8)或(3,0).7.如图1,抛物线y1=ax2﹣3x+c的图象与x轴的交点为A和B,与y轴交点为D(0,4),与直线y2=﹣x+b交点为A和C,且OA=OD.(1)求抛物线的解析式和b值;(2)在直线y2=﹣x+b上是否存在一点P,使得△ABP是等腰直角三角形,如果存在,求出点P的坐标,如果不存在,请说明理由;(3)将抛物线y1图象x轴上方的部分沿x轴翻折得一个“M”形状的新图象(如图2),若直线y3=﹣x+n与该新图象恰好有四个公共点,请求出此时n的取值范围.【答案】(1)y1=﹣x2﹣3x+4,b=﹣4;(2)在直线y2=﹣x﹣4上存在点P使得△ABP是等腰直角三角形,点P的坐标为(﹣,﹣)或(1,﹣5);(3)﹣8<n<﹣4.【解答】解:(1)∵D(0,4),∴OD=4,∵OA=OD,点A在x的负半轴上,∴A(﹣4,0),把A(﹣4,0),D(0,4)分别代入y1=ax2﹣3x+c,得,解得:,∴该抛物线的解析式为y1=﹣x2﹣3x+4,把A(﹣4,0)代入y2=﹣x+b,得4+b=0,解得:b=﹣4;(2)存在.在y1=﹣x2﹣3x+4中,令y1=0,得﹣x2﹣3x+4=0,解得:x1=﹣4,x2=1,∴B(1,0),如图1,设直线y2=﹣x﹣4与y轴交于点G,则G(0,﹣4),∴OG=4,∵A(﹣4,0),∴OA=4,∴OA=OG,∴△AOG是等腰直角三角形,∴∠BAC=45°,当∠APB=90°时,如图1,过点P作PH⊥x轴于点H,∵∠BAP=45°,∠APB=90°,∴∠ABP=45°=∠BAP,∴PA=PB,即△ABP是等腰直角三角形,∵PH⊥AB,∴AH=BH,即H是AB的中点,∴H(﹣,0),∴点P的横坐标为﹣,当x=﹣时,y2=﹣(﹣)﹣4=﹣,∴P1(﹣,﹣);当∠ABP=90°时,则∠APB=∠BAP=45°,∴BP=AB=5,∴P2(1,﹣5);综上所述,在直线y2=﹣x﹣4上存在点P使得△ABP是等腰直角三角形,点P的坐标为(﹣,﹣)或(1,﹣5);(3)∵y1=﹣x2﹣3x+4=﹣(x+)2+,∴抛物线y1=﹣x2﹣3x+4的顶点为(﹣,),沿x轴翻折后的解析式为y=(x+)2﹣,把A(﹣4,0)代入y3=﹣x+n,得4+n=0,解得:n=﹣4,联立抛物线y=(x+)2﹣与直线y3得:(x+)2﹣=﹣x+n,整理得:x2+4x﹣(n+4)=0,当Δ=16+4(n+4)=0时,n=﹣8,∴当直线y3=﹣x+n与该新图象恰好有四个公共点时,﹣8<n<﹣4.8.如图,抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,直线y=﹣x与该抛物线交于E,F两点.(1)求抛物线的解析式.(2)P是直线EF下方抛物线上的一个动点,作PH⊥EF于点H,求PH的最大值.(3)以点C为圆心,1为半径作圆,⊙C上是否存在点M,使得△BCM是以CM为直角边的直角三角形?若存在,直接写出M点坐标;若不存在,说明理由.【答案】见试题解答内容【解答】解:(1)∵抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(﹣3,0),B(1,0)两点,∴,∴,∴抛物线的解析式为y=x2+x﹣2;(2)如图1,过点P作直线l,使l∥EF,过点O作OP'⊥l,当直线l与抛物线只有一个交点时,PH最大,等于OP',∵直线EF的解析式为y=﹣x,设直线l的解析式为y=﹣x+m①,∵抛物线的解析式为y=x2+x﹣2②,联立①②化简得,x2+x﹣2﹣m=0,∴△=﹣4××(﹣2﹣m)=0,∴m=﹣,∴直线l的解析式为y=﹣x﹣,令y=0,则x=﹣,∴M(﹣,0),∴OM=,在Rt△OP'M中,OP'==,∴PH最大=.(3)①当∠CMB=90°时,如图2,∴BM是⊙O的切线,∵⊙C半径为1,B(1,0),∴BM2∥y轴,∴∠CBM2=∠BCO,M2(1,﹣2),∴BM2=2,∵BM1与BM2是⊙C的切线,∴BM1=BM2=2,∠CBM1=∠CBM2,∴∠CBM1=∠BCO,∴BD=CD,在Rt△BOD中,OD2+OB2=BD2,∴OD2+1=(2﹣OD)2,∴OD=,∴BD=,∴DM1=过点M1作M1Q⊥y轴,∴M1Q∥x轴,∴△BOD∽△M1QD,∴,∴,∴M1Q=,DQ=,∴OQ=+=,∴M1(﹣,﹣),②当∠BCM=90°时,如图3,∴∠OCM3+∠OCB=90°,∵∠OCB+∠OBC=90°,∴∠OCM3=∠OBC,在Rt△BOC中,OB=1,OC=2,∴tan∠OBC==2,∴tan∠OCM3=2,过点M3作M3H⊥y轴于H,在Rt△CHM3中,CM3=1,设CH=m,则M3H=2m,根据勾股定理得,m2+(2m)2=1,∴m=,∴M3H=2m=,OH=OC﹣CH=2﹣,∴M3(﹣,﹣2),而点M4与M3关于点C对称,∴M4(,﹣﹣2),即:满足条件的点M的坐标为(﹣,﹣)或(1,﹣2)或(﹣,﹣2)或(,﹣﹣2).9.如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(﹣5,0)和点B(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点P是抛物线上A、D之间的一点,过点P作PE⊥x轴于点E,PG⊥y轴,交抛物线于点G,过点G作GF⊥x轴于点F,当矩形PEFG的周长最大时,求点P的横坐标;(3)如图2,连接AD、BD,点M在线段AB上(不与A、B重合),作∠DMN=∠DBA,MN交线段AD于点N,是否存在这样点M,使得△DMN为等腰三角形?若存在,求出AN的长;若不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)抛物线的表达式为:y=﹣(x+5)(x﹣1)=﹣x2﹣x+,则点D(﹣2,4);(2)设点P(m,﹣m2﹣m+),则PE=﹣m2﹣m+,PG=2(﹣2﹣m)=﹣4﹣2m,矩形PEFG的周长=2(PE+PG)=2(﹣m2﹣m+﹣4﹣2m)=﹣(m+)2+,∵﹣<0,故当m=﹣时,矩形PEFG周长最大,此时,点P的横坐标为﹣;(3)∵∠DMN=∠DBA,∠BMD+∠BDM=180°﹣∠DBA,∠NMA+∠DMB=180°﹣∠DMN,∴∠NMA=∠MDB,∴△BDM∽△AMN,,而AB=6,AD=BD=5,①当MN=DM时,∴△BDM≌△AMN,即:AM=BD=5,则AN=MB=1;②当NM=DN时,则∠NDM=∠NMD,∴△AMD∽△ADB,∴AD2=AB×AM,即:25=6×AM,则AM=,而,即=,解得:AN=;③当DN=DM时,∵∠DNM>∠DAB,而∠DAB=∠DMN,∴∠DNM>∠DMN,∴DN≠DM;故AN=1或.10.如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于B(4,0),C(﹣2,0)两点,与y轴交于点A(0,﹣2).(1)求该抛物线的函数表达式;(2)若点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点K,过点P作y轴的平行线交x轴于点D,求的最大值及此时点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△MAB是以AB为一条直角边的直角三角形;若存在,请求出点M的坐标,若不存在,请说明理由.【答案】(1)y=x2﹣x﹣2;(2)最大值为,此时P(,﹣);(3)存在,M的坐标为(1,6)或(1,﹣4).【解答】解:(1)由题意,,解得,∴抛物线的解析式为y=x2﹣x﹣2;(2)∵A(0,﹣2),B(4,0),∴直线AB的解析式为y=x﹣2,设P(0<m<4),则,∴PK+PD=(m﹣m2+m)+(﹣+m+2)=﹣m2+m+2=﹣(m﹣)2+,∵﹣<0,∴当m=时,PK+PD有最大值,最大值为,此时P(,﹣);(3)存在.过A作AM2⊥AB交抛物线的对称轴于M2,过B作BM1⊥AB交抛物线的对称轴于点M1,连接AM1,BM2,设M1(1,n),则=n2+4n+5,=n2+9,由AB2+=,可得22+42+n2+9=n2+4n+5,∴n=6,∴M1(1,6),∴直线BM1解析式为y=﹣2x+8,∵AM2∥BM1,且经过A(0,﹣2),∴直线AM2解析式为y=﹣2x﹣2,∴当x=1时,y=﹣2×1﹣2=﹣4,∴M2(1,﹣4),综上所述:存在,M的坐标为(1,6)或(1,﹣4).11.如图,二次函数y=x2+bx+c的图象过点A(4,﹣4),B(﹣2,m),交y轴于点C(0,﹣4).直线BO与抛物线相交于另一点D,连接AB,AD,点E是线段AB上的一动点,过点E作EF∥BD交AD于点F.(1)求二次函数y=x2+bx+c的表达式;(2)判断△ABD的形状,并说明理由;(3)在点E的运动过程中,直线BD上存在一点G,使得四边形AFGE为矩形,请判断此时AG与BD的数量关系,并求出点E的坐标;(4)点H是抛物线的顶点,在(3)的条件下,点P是平面内使得∠EPF=90°的点,在抛物线的对称轴上,是否存在点Q,使得△HPQ是以∠PQH为直角的等腰直角三角形,若存在,直接写出符合条件的所有点Q的坐标;若不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)∵二次函数y=x2+bx+c的图象过点A(4,﹣4),点C(0,﹣4),本号#资料全部来源#于:数学∴,解得,∴二次函数的解析式为y=x2﹣x﹣4.(2)△ABD是直角三角形,理由:∵B(﹣2,m)在y=x2﹣x﹣4,∴B(﹣2,﹣1),∴直线OB的解析式为y=x,由,解得(即点B)或,∴D(8,4),∵A(4,﹣4),∴AB==3,AD==4,BD==5,∴BD2=AB2+AD2,∴∠BAD=90°,∴△ABD是直角三角形.(3)结论AG=BD.理由:如图1中,连接AG,交EF于H.∵四边形AEGF是矩形,∴AH=HG,EH=FH,∵EF∥BD,∴==1,∴AE=BE,∴E(1,﹣),∵==,EH=FH,∴BG=GD,∵∠BAD=90°,∴AG=BD.(4)如图2中,设EF的中点为K,P(x,y),连接PK.∵E(1,﹣),F(6,0),∴K(,﹣),EF==,∵∠EPF=90°,∴点P在以EF为直径的⊙K上运动,∵△PQH是等腰直角三角形,∠PQH=90°,∴∠QHP=45°,∵抛物线的顶点H(2,﹣5),∴直线PH的解析式为y=x﹣7,∵PK=EF,∴(x﹣)2+(y+)2=()2,(y+7﹣)2+(y+)2=()2,解得y=﹣4或﹣,∴Q(2,﹣4)或(2,﹣).12.如果抛物线C1的顶点在抛物线C2上,抛物线C2的顶点也在抛物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c是“互为关联”的抛物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.【答案】见试题解答内容【解答】解:由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c得,解得,∴y2=﹣+x+2,∴B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,kBE•kAB=﹣1,∴kBE=﹣1,直线BE解析式为y=﹣x+5联立,解得x=2,y=3或x=6,y=﹣1,∴E(6,﹣1);②若A为直角顶点,AE⊥AB,同理得AE解析式:y=﹣x﹣3,联立,解得x=﹣2,y=﹣1或x=10,y=﹣13,∴E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)由AE⊥BE得kBE•kAE=﹣1,即,,,(m﹣2)2(m﹣6)(m+2)=﹣16(m+2)(m﹣2),(m+2)(m﹣2)[(m﹣2)(m﹣6)+16]=0,∴m+2=0或m﹣2=0,或(m﹣2)(m﹣6)+16=0(无解)解得m=2或﹣2(不符合题意舍去),∴点E的坐标E(6,﹣1)或E(10,﹣13);(3)∵y1≤y2,∴﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,则Q(﹣),S1=QM•|yF﹣yA|=设AB交MN于点P,易知P(t,t+1),S2=PN•|xA﹣xB|=2﹣S=S1+S2=4t+8,当t=2时,S的最大值为16.四.等腰三角形的判定(共1小题)13.在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC所在的直线上运动,作∠ADE=45°(A,D,E按逆时针方向).(1)如图1,若点D在线段BC上运动,DE交AC于E.①求证:△ABD∽△DCE;②当△ADE是等腰三角形时,求AE的长.(2)①如图2,若点D在BC的延长线上运动,DE的反向延长线与AC的延长线相交于点E′,是否存在点D,使△ADE′是等腰三角形?若存在,写出所有点D的位置;若不存在,请简要说明理由;②如图3,若点D在BC的反向延长线上运动,是否存在点D,使△ADE是等腰三角形?若存在,写出所有点D的位置;若不存在,请简要说明理由.【答案】见试题解答内容【解答】解:(1)①由∠BAC=90°,AB=AC,推出∠B=∠C=45°.由∠BAD+∠ADB=135°,∠ADB+∠EDC=135°得到∠BAD=∠EDC.推出△ABD∽△DCE.②分三种情况:(ⅰ)当AD=AE时,∠ADE=∠AED=45°时,得到∠DAE=90°,点D、E分别与B、C重合,所以AE=AC=2.(ⅱ)当AD=DE时,由①知△ABD∽△DCE,又AD=DE,知△ABD≌△DCE.所以AB=CD=2,故BD=CE=2,所以AE=AC﹣CE=4﹣2.(ⅲ)当AE=DE时,有∠EAD=∠ADE=45°=∠C,故∠ADC=∠AED=90°.所以DE=AE=AC=1.(2)①存在(只有一种情况).由∠ACB=45°推出∠CAD+∠ADC=45°.由∠ADE=45°推出∠DAC+∠DE′A=45°.从而推出∠ADC=∠DE′A.证得△ADC∽△AE′D.本号资料全部来源于微信公众#号:数学所以,又AD=DE′,所以DC=AC=2.②不存在.因为D和B不重合,所以∠AED<45°,∠ADE=45°,∠DAE>90度.所以AD≠AE,同理可得:AE≠DE.五.三角形综合题(共2小题)14.如图1,B、D分别是x轴和y轴的正半轴上的点,AD∥x轴,AB∥y轴(AD>AB),点P从C点出发,以3cm/s的速度沿C﹣D﹣A﹣B匀速运动,运动到B点时终止;点Q从B点出发,以2cm/s的速度,沿B﹣C﹣D匀速运动,运动到D点时终止.P、Q两点同时出发,设运动的时间为t(s),△PCQ的面积为S(cm2),S与t之间的函数关系由图2中的曲线段OE,线段EF、FG表示.(1)求A、D点的坐标;(2)求图2中线段FG的函数关系式;(3)是否存在这样的时间t,使得△PCQ为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)设AD=BC=a,由图象可知CD=AB=3,点Q到达点C时,点P到达点A,∴=,∴a=6,∴点A坐标(6,3),点D坐标(0,3).(2)当点Q在CD上,点P在AB上时,对应的函数图象是线段FG,∴S=•OQ•6=3OQ=3(2t﹣6)=6t﹣18(3≤t≤4.5).(3)①Q在BC上,P在CD上时,由CP=CQ得6﹣2t=3t,解得t=(不合题意舍弃,>1),②Q在BC上,P在AD上时,由CP=CQ得6﹣2t=,整理得5t2+6t﹣18=0,t=或(舍弃).由PQ=CQ,如图1中,作PK⊥OB于K,则DP=OK=3t﹣3,KQ=6﹣2t﹣(3t﹣3)=9﹣5t,∴PQ==∴=6﹣2t,整理得7t2﹣22t+18=0,Δ<0,无解.当PC=PQ.如图2中,作PK⊥OB于K,则OK=KQ=DP,∴OQ=2DP,∴6﹣2t=2(3t﹣3),解得t=,③Q在CD上,P在AB上时,由CP=PQ,如图3中,作PK⊥OD于K,则KQ=OK=PB,∴2PB=OQ,∴2(12﹣3t)=2t﹣6,解得t=,综上所述t=s或s或s时,△PCQ为等腰三角形是等腰三角形.15.如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为acm/s(当P、Q两个点中有一个点到达终点时,即停止).连接PQ,设P的运动的时间为t(单位:s).设CQ=y,运动时间为(s),y与t的函数关系如图②所示,解答下列问题:(1)a的值2;当t=时,PQ∥BC;(2)设△AQP面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.(3)是否存在某一时刻使得△AQP为等腰三角形,如果存在,请直接写出t的值;如果不存在,请说明理由.(4)如图3,连接BQ、CP交于点E,求当∠CPQ=∠CBQ时,t的值.【答案】(1)2,.(2)t=时,S有最大值,最大值为.(3)t的值为或或.(4)t的值为.【解答】解:(1)由题意y=CQ=8﹣at,当t=2时,y=4,∴4=8﹣2a,∴a=2,当PQ∥BC时,∵AP:AB=AQ:AC,∴=,∴t=,故答案为:2,.(2)如图1中,过点P作PH⊥AC于H.∵AB=10,BC=6,AC=8,∴AB2=BC2+AC2,∴∠C=90°,∴∠AHP=∠C=90°,∴PH∥BC,∴=,∴=,∴PH=(10﹣2t),∴S=×2t×(10﹣2t)=﹣t2+6t=﹣(t﹣)2+,∵﹣<0,0<t≤4,∴t=时,S有最大值,最大值为.(3)如图4﹣1中,当AQ=PQ时,过点Q作QT⊥AP于T.∵QA=QP,QT⊥AP,∴AT=PT,∵cosA==∴=,∴t=.当AP=AQ时,10﹣2t=2t,∴t=,如图4﹣2中,当PA=PQ时,过点P作PJ⊥AQ于J,则AJ=JQ.由cosA==,可得=,∴t=,综上所述,满足条件的t的值为或或.(4)如图3中,∵∠CPQ=∠CBQ,∠PEQ=∠BEC,∴△PEQ∽△BEC,∴=,∴=,∵∠PEB=∠QEC,∴△PEB∽△QEC,∴∠EPB=∠CQE,∵∠CBQ+∠CQB=90°,∴∠BPQ=∠CPQ+∠BPE=90°,∴cosA==,∴=,∴t=,当∠CPQ=∠CBQ时,t的值为.六.四边形综合题(共2小题)16.如图1,在矩形ABCD中,AB=10,AD=8,E是AD边上的一点,连接CE,将矩形ABCD沿CE折叠,顶点D恰好落在AB边上的点F处,延长CE交BA的延长线于点G.(1)求线段AE的长;(2)求证四边形DGFC为菱形;(3)如图2,M,N分别是线段CG,DG上的动点(与端点不重合),且∠DMN=∠DCM,设DN=x,是否存在这样的点N,使△DMN是直角三角形?若存在,请求出x的值;若不存在,请说明理由.本号资料全部来源于:#数学【答案】(1)AE=3;(2)证明过程详见解答;(3)DN=或2.【解答】(1)解:∵四边形ABCD是矩形,∴∠DAB=∠B=∠ADC=90°,CD=AB=10,BC=AD=8,在Rt△BCF中,CF=CD=10,BC=8,∴BF=6,∴AF=AB﹣BF=4,设AE=x,则EF=DE=8﹣x,在Rt△AEF中,由勾股定理得,EF2﹣AE2=AF2,∴(8﹣x)2﹣x2=42,∴x=3,∴AE=3;(2)证明:∵四边形ABCD是矩形,∴AB∥CD,∴△AGE∽△DCE,∴,由(1)得:AE=3,∴DE=8﹣3=5,∴,∴AG=6,∴FG=AF+AG=4+6=10,∴FG=CD,∴四边形DGFC是平行四边形,∵CD=CF,∴▱DGFC是菱形;(3)解:∵四边形FGDC是菱形,∴∠DGC=∠DCG=∠FGC=,DG=CD=10,本号资料全部来源于微信公众#号:数学在Rt△BCG中,BC=8,BG=BF+FG=6+10=16,∴tan∠FGC=,CG===8,∴sin∠FCG==,如图1,当∠MDN=90°时,在Rt△GDM中,DM=DG•tan∠DGM=10•tan∠FGC=10×=5,在Rt△DMN中,DN=DM•tan∠DMN,∵∠DMN=∠DCM,∠DCM=∠FGC,∴DN=DM•tan∠FGC=5×=,如图2,当∠MND=90°时,∠DMN+∠GDM=90°,∵∠DMN=∠DCM=∠DGM,∴∠DGM+∠GDM=90°,本号资料全部来源于:数学第六*感∴∠DMG=90°,∴DM=DG•sin∠DGM=10×=2,在Rt△DMN中,DN=DM•sin∠DMN=DM•sin∠FGC=2×=2,综上所述:DN=或2.17.如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△PAB关于直线PA的对称△PAB′,设点P的运动时间为t(s).(1)若AB=2.①如图2,当点B′落在AC上时,显然△PAB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠PAM=45°成立,试探究:对于t>3的任意时刻,结论“∠PAM=45°”是否总是成立?请说明理由.【答案】见试题解答内容【解答】解:(1)①如图1中,本号资料全部来#源于:数学∵四边形ABCD是矩形,∴∠ABC=90°,∴AC==,∵∠PCB′=∠ACB,∠PB′C=∠ABC=90°,∴△PCB′∽△ACB,∴=,∴=,∴PB′=2﹣4.∴t=PB=2﹣4.②如图2﹣1中,当∠PCB′=90°时,∵四边形ABCD是矩形,∴∠D=90°,AB=CD=2,AD=BC=3,∴DB′==,∴CB′=CD﹣DB′=,在Rt△PCB′中,∵B′P2=PC2+B′C2,∴t2=()2+(3﹣t)2,∴t=2.如图2﹣2中,当∠PCB′=90°时,本号资料#全部*来源于:数学在Rt△ADB′中,DB′==,∴CB′=3在Rt△PCB′中则有:,解得t=6.如图2﹣3中,当∠CPB′=90°时,易证四边形ABP′为正方形,易知t=2.综上所述,满足条件的t的值为2或6或2.(2)如图3﹣1中,∵∠PAM=45°∴∠2+∠3=45°,∠1+∠4=45°又∵翻折,∴∠1=∠2,∠3=∠4,又∵∠ADM=∠AB′M,AM=AM,∴△AMD≌△AMB′(AAS),∴AD=AB′=AB,即四边形ABCD是正方形,如图,设∠APB=x.∴∠PAB=90°﹣x,∴∠DAP=x,易证△MDA≌△B′AM(HL),∴∠BAM=∠DAM,∵翻折,∴∠PAB=∠PAB′=90°﹣x,∴∠DAB′=∠PAB′﹣∠DAP=90°﹣2x,∴∠DAM=∠DAB′=45°﹣x,∴∠MAP=∠DAM+∠PAD=45°.七.切线的性质(共1小题)18.已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为,过点C作⊙A的切线交x轴于点B(﹣4,0).(1)求切线BC的解析式;(2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标;(3)向左移动⊙A(圆心A始终保持在x轴上),与直线BC交于E、F,在移动过程中是否存在点A,使△AEF是直角三角形?若存在,求出点A的坐标;若不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)如图1所示,连接AC,则AC=,在Rt△AOC中,AC=,OA=1,则OC=2,∴点C的坐标为(0,2);设切线BC的解析式为y=kx+b,它过点C(0,2),B(﹣4,0),则有,解之得;∴.(4分)(2)如图1所示,设点G的坐标为(a,c),过点G作GH⊥x轴,垂足为H点,则OH=a,GH=c=a+2,(5分)连接AP,AG;因为AC=AP,AG=AG,所以Rt△ACG≌Rt△APG(HL),所以∠AGC=×120°=60°,*本号资料全部来源于#:数学在Rt△ACG中,∠AGC=60°,AC=,∴sin60°=,∴AG=;(6分)在Rt△AGH中,AH=OH﹣OA=a﹣1,GH=a+2,∵AH2+GH2=AG2,∴(a﹣1)2+=,解之得:a1=,a2=﹣(舍去);(7分)∴点G的坐标为(,+2).(8分)(3)如图2所示,在移动过程中,存在点A,使△AEF为直角三角形.(9分)要使△AEF为直角三角形,∵AE=AF,∴∠AEF=∠AFE≠90°,∴只能是∠EAF=90°;当圆心A在点B的右侧时,过点A作AM⊥BC,垂足为点M,在Rt△AEF中,AE=AF=,则EF=,AM=EF=;在Rt△OBC中,OC=2,OB=4,则BC=2,∵∠BOC=∠BMA=90°,∠OBC=∠OBM,∴△BOC∽△BMA,∴=,∴AB=,∴OA=OB﹣AB=4﹣,∴点A的坐标为(﹣4+,0);(11分)当圆心A在点B的左侧时,设圆心为A′,过点A′作A′M′⊥BC于点M′,可得:△A′M′B≌△AMB,A′B=AB=,∴OA′=OB+A′B=4+,∴点A′的坐标为(﹣4﹣,0);综上所述,点A的坐标为(﹣4+,0)或(﹣4﹣,0).(13分)八.圆的综合题(共1小题)19.已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(﹣3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x﹣3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,2为半径画圆.①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点,连接QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)如图1,连接BC,∵∠BOC=90°,∴点P在BC上,∵⊙P与直线l1相切于点B,∴∠ABC=90°,而OA=OB,∴△ABC为等腰直角三角形,则⊙P的直径长=BC=AB=3;(2)过点作CM⊥AB,由直线l2:y=3x﹣3得:点C(1,0),则CM=ACsin45°=4×=2=圆的半径,故点M是圆与直线l1的切点,即:直线l1与⊙Q相切;(3)如图3,①当点M、N在两条直线交点的下方时,由题意得:MQ=NQ,∠MQN=90°,设点Q的坐标为(m,3m﹣3),则点N(m,m+3),则NQ=m+3﹣3m+3=2,解得:m=3﹣;②当点M、N在两条直线交点的上方时,同理可得:m=3;故点Q的坐标为(3﹣,6﹣3)或(3+,6+3).九.几何变换综合题(共2小题)20.如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.【答案】见试题解答内容【解答】(1)证明:如图1中,∵CA=CB,∠ACB=90°,BD=AD,∴CD⊥AB,CD=AD=BD,∵CD=CF,∴AD=CF,∵∠ADC=∠DCF=90°,∴AD∥CF,∴四边形ADFC是平行四边形,∴OD=OC,∵BD=2OD.(2)①解:如图2中,作DT⊥BC于点T,FH⊥BC于H.由题意:BD=AD=CD=7,BC=BD=14,∵DT⊥BC,∴BT=TC=7,∵EC=2,∴TE=5,∵∠DTE=∠EHF=∠DEF=90°,∴∠DET+∠TDE=90°,∠DET+∠FEH=90°,∴∠TDE=∠FEH,∵ED=EF,∴△DTE≌△EHF(AAS),∴FH=ET=5,∵∠DBE=∠DFE=45°,∴B,D,E,F四点共圆,∴∠DBF+∠DEF=180°,∴∠DBF=90°,∵∠DBE=45°,∴∠FBH=45°,∵∠BHF=90°,∴∠HBF=∠HFB=45°,∴BH=FH=5,∴BF=5,∵∠ADC=∠ABF=90°,∴DG∥BF,∵AD=DB,∴AG=GF,∴DG=BF=.②解:如图3﹣1中,当∠DEG=90°时,F,E,G,A共线,作DT⊥BC于点T,FH⊥BC于H.设EC=x.∵AD=6BD,∴BD=AB=2,∵DT⊥BC,∠DBT=45°,∴DT=BT=2,∵△DTE≌△EHF,∴EH=DT=2,∴BH=FH=12﹣x,∵FH∥AC,∴=,∴=,整理得:x2﹣12x+28=0,解得x=6±2.如图3﹣2中,当∠EDG=90°时,取AB的中点O,连接OG.作EH⊥AB于H.设EC=x,由2①可知BF=(12﹣x),OG=BF=(12﹣x),∵∠EHD=∠EDG=∠DOG=90°,∴∠ODG+∠OGD=90°,∠ODG+∠EDH=90°,∴∠DGO=∠HDE,∴△EHD∽△DOG,∴=,∴=,整理得:x2﹣36x+268=0,解得x=18﹣2或18+2(舍弃),如图3﹣3中,当∠DGE=90°时,取AB的中点O,连接OG,CG,作DT⊥BC于T,FH⊥BC于H,EK⊥CG于K.设EC=x.∵∠DBE=∠DFE=45°,∴D,B,F,E四点共圆,∴∠DBF+∠DEF=180°,∵∠DEF=90°,∴∠DBF=90°,∵AO=OB,AG=GF,∴OG∥BF,∴∠AOG=∠ABF=90°,∴OG⊥AB,∵OG垂直平分线段AB,∵CA=CB,∴O,G,C共线,由△DTE≌△EHF,可得EH=DT=BT=2,ET=FH=12﹣x,BF=(12﹣x),OG=BF=(12﹣x),CK=EK=x,GK=7﹣(12﹣x)﹣x,由△OGD∽△KEG,可得=,本号资*料全部来源于:数学∴=,解得x=2,,综上所述,满足条件的EC的值为6±2或18﹣2或2.21.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)求证:△CDE是等边三角形;(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2cm,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;③当6<t<10s时,不存在直角三角形.④如图,当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14s,综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.一十.相似形综合题(共4小题)22.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ:S△ABC=9:100?若存在,求出t的值;若不存在,则说明理由.(3)是否存在某一时刻t,使得△CPQ为等腰三角形?若存在,求出所有满足条件的t的值;若不存在,则说明理由.【答案】见试题解答内容【解答】解:(1)如图1,∵∠ACB=90°,AC=8,BC=6,∴AB=10.∵CD⊥AB,∴S△ABC=BC•AC=AB•CD.∴CD===4.8.∴线段CD的长为4.8;(2)①过点P作PH⊥AC,垂足为H,如图2所示.由题可知DP=t,CQ=t.则CP=4.8﹣t.∵∠ACB=∠CDB=90°,∴∠HCP=90°﹣∠DCB=∠B.∵PH⊥AC,∴∠CHP=90°.∴∠CHP=∠ACB.∴△CHP∽△BCA.∴=.∴=.∴PH=﹣t.∴S△CPQ=CQ•PH=t(﹣t)=﹣t2+t;②存在某一时刻t,使得S△CPQ:S△ABC=9:100.∵S△ABC=×6×8=24,且S△CPQ:S△ABC=9:100,∴(﹣t2+t):24=9:100.整理得:5t2﹣24t+27=0.即(5t﹣9)(t﹣3)=0.解得:t=或t=3.∵0≤t≤4.8,∴当t=秒或t=3秒时,S△CPQ:S△ABC=9:100;(3)存在①若CQ=CP,如图1,则t=4.8﹣t.解得:t=2.4.…(7分)②若PQ=PC,如图2所示.∵PQ=PC,PH⊥QC,∴QH=CH=QC=.∵△CHP∽△BCA.∴=.∴=.解得;t=.③若QC=QP,过点Q作QE⊥CP,垂足为E,如图3所示.同理可得:t=.综上所述:当t为2.4秒或秒或秒时,△CPQ为等腰三角形.23.如图,在矩形ABCD中,AB=3,BC=4,动点P从点D出发沿DA向终点A运动,同时动点Q从点A出发沿对角线AC向终点C运动.过点P作PE∥DC,交AC于点E,动点P、Q的运动速度是每秒1个单位长度,运动时间为x秒,当点P运动到点A时,P、Q两点同时停止运动.设PE=y;(1)求y关于x的函数关系式;(2)探究:当x为何值时,四边形PQBE为梯形?(3)是否存在这样的点P和点Q,使P、Q、E为顶点的三角形是等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)∵矩形ABCD,∴∠D=90°,AB=DC=3,AD=BC=4,∴在Rt△ACD中,利用勾股定理得:AC==5,∵PE∥CD,∴∠APE=∠ADC,∠AEP=∠ACD,∴△APE∽△ADC,又PD=x,AD=4,AP=AD﹣PD=4﹣x,AC=5,PE=y,DC=3,∴==,即==,∴y=﹣x+3;(2)若QB∥PE,四边形PQBE是矩形,非梯形,故QB与PE不平行,当QP∥BE时,∠PQE=∠BEQ,∴∠AQP=∠CEB,∵AD∥BC,∴∠PAQ=∠BCE,∴△PAQ∽△BCE,由(1)得:AE=﹣x+5,PA=4﹣x,BC=4,AQ=x,∴==,即==,整理得:5(4﹣x)=16,解得:x=,∴当x=时,QP∥BE,而QB与PE不平行,此时四边形PQBE是梯形;(3)存在.分两种情况:当Q在线段AE上时:QE=AE﹣AQ=﹣x+5﹣x=5﹣x,(i)当QE=PE时,5﹣x=﹣x+3,解得:x=;(ii)当QP=QE时,∠QPE=∠QEP,∵∠APQ+∠QPE=90°,∠PAQ+∠QEP=90°,∴∠APQ=∠PAQ,∴AQ=QP=QE,∴x=5﹣x,解得:x=;(iii)当QP=PE时,过P作PF⊥QE于F,可得:FE=QE=(5﹣x)=,∵PE∥DC,∴∠AEP=∠ACD,∴cos∠AEP=cos∠ACD==,∵cos∠AEP===,解得:x=;当点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论