整式乘除解题技巧_第1页
整式乘除解题技巧_第2页
整式乘除解题技巧_第3页
整式乘除解题技巧_第4页
整式乘除解题技巧_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

整式乘除解题技巧一、教学内容二、教学目标1.理解整式乘除的概念及意义,掌握相关运算法则;2.能够运用整式乘除解决实际问题,提高解决问题的能力;3.培养学生的逻辑思维能力,提高学生的数学素养。三、教学难点与重点1.教学难点:整式乘除过程中,如何正确运用分配律、结合律及除法的性质;2.教学重点:掌握整式乘除的运算法则,能够熟练进行整式乘除运算。四、教具与学具准备1.教具:黑板、粉笔、投影仪;2.学具:练习本、尺子、圆规、量角器。五、教学过程1.实践情景引入:以实际问题引入整式乘除的概念,如计算“一块矩形土地的长为10米,宽为5米,求该土地的面积”。2.讲解与演示:(1)单项式与多项式的乘法:利用投影仪展示例题,如“计算(2x+3)(x1)”,引导学生理解分配律、结合律的应用;(2)整式的除法:以“计算10x²÷2x”为例,讲解长除法的步骤及除法的性质;(3)因式分解:以“计算x²5x+6的因式分解”为例,讲解提取公因式、分组分解等方法。3.随堂练习:(1)计算下列整式的乘积:a.(3x+2)(2x1)b.(4y5)(y+3)(2)计算下列整式的商:a.12x²÷3xb.20x³÷4x²4.板书设计:(1)整式乘法:例题:(2x+3)(x1)解答:2x²+3x2x3=2x²+(32)x3=2x²+x3(2)整式除法:例题:10x²÷2x解答:5x(3)因式分解:例题:x²5x+6解答:=(x2)(x3)5.作业设计(1)计算下列整式的乘积:a.(2x3)(x+4)b.(5y+7)(y2)(2)计算下列整式的商:a.18x²÷3xb.24x³÷8x²六、课后反思及拓展延伸1.课后反思:本节课通过实际问题引入整式乘除的概念,让学生在解决实际问题的过程中,掌握相关运算法则。在讲解过程中,注意引导学生运用分配律、结合律及除法的性质,培养学生的逻辑思维能力。2.拓展延伸:鼓励学生探索整式乘除的更多运算法则,如平方差公式、完全平方公式等,提高学生的数学素养。重点和难点解析一、教学难点与重点教学难点:整式乘除过程中,如何正确运用分配律、结合律及除法的性质;教学重点:掌握整式乘除的运算法则,能够熟练进行整式乘除运算。二、重点和难点解析1.分配律的应用:分配律是整式乘法中的重要法则,正确运用分配律可以简化计算过程。例如,在计算(2x+3)(x1)时,可以运用分配律将其展开为2x²+3x2x3,再进行合并同类项,得到最终结果2x²+x3。2.结合律的应用:结合律可以帮助我们改变运算顺序,简化计算过程。例如,在计算(2x+3)(2x1)时,可以先运用结合律将其展开为4x²2x+6x3,再进行合并同类项,得到最终结果4x²+4x3。3.除法的性质:在整式除法中,正确运用除法的性质可以简化计算过程。例如,在计算10x²÷2x时,可以先将除数和被除数同时除以2,得到5x²÷x,再进行计算,得到最终结果5x。4.提取公因式:在因式分解中,提取公因式是一种常用的方法。例如,在计算x²5x+6的因式分解时,可以先观察各项的系数,找到一个公因数1,将其提取出来,得到x²5x+6=1(x²5x+6),然后再对括号内的二次多项式进行因式分解,得到最终结果(x2)(x3)。5.分组分解:在因式分解中,分组分解也是一种常用的方法。例如,在计算x²4x+4的因式分解时,可以将中间项4x拆分为2x和2x,然后将其分组,得到x²2x2x+4,再进行因式分解,得到最终结果(x2)²。掌握整式乘除的运算法则是解决数学问题的关键,而正确运用分配律、结合律及除法的性质,提取公因式和分组分解等方法,可以帮助我们更高效地进行整式乘除运算。在教学过程中,教师应重点关注这些难点和重点,通过举例讲解、练习巩固等方式,帮助学生熟练掌握相关技巧,提高解题能力。同时,教师也应鼓励学生多加练习,培养学生的逻辑思维能力和数学素养。本节课程教学技巧和窍门一、语言语调:在讲解整式乘除的过程中,使用清晰、简洁的语言,避免使用复杂的数学术语,让学生更容易理解和跟随。语调要适中,不过于平淡也不过于激昂,保持一种平和、引导式的语气,帮助学生集中注意力。二、时间分配:合理分配课堂时间,确保每个环节都有足够的时间进行深入讲解和练习。例如,可以分配10分钟讲解整式乘法,10分钟讲解整式除法,10分钟进行因式分解的讲解,剩余的时间进行随堂练习和解答学生的问题。三、课堂提问:在讲解过程中,适时向学生提问,鼓励学生积极参与课堂讨论。例如,在讲解整式乘法时,可以提问“谁能告诉我分配律的定义是什么?”或者在讲解因式分解时,可以提问“大家能找到这个多项式的公因式吗?

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论