版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024-2025学年江苏省扬州市部分学校数学九上开学调研模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)一次函数y=3x-2的图象不经过().A.第一象限B.第二象限C.第三象限D.第四象限2、(4分)若,则的值为()A.9 B.-9 C.35 D.-353、(4分)据统计,湘湖景区跨湖桥遗址参观人数2016年为10.8万人次,2018年为16.8万人次,设该景点年参观人次的年平均增长率为x,则可列方程()A.10.8(1+x)=16.8 B.10.8(1+2x)=16.8C.10.8(1+x)=16.8 D.10.8[(1+x)+(1+x)]=16.84、(4分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=3EQ;④△PBF是等边三角形,其中正确的是()A.①②③ B.②③④ C.①②④ D.①③④5、(4分)如图,在中,对角线,相交于点,点分别是边的中点,交与点,则与的比值是()A. B. C. D.6、(4分)如图所示,将△ABC绕点A按逆时针旋转50°后,得到△ADC′,则∠ABD的度数是()A.30° B.45° C.65° D.75°7、(4分)已知a<b,则下列不等式正确的是()A.a﹣3<b﹣3 B.> C.﹣a<﹣b D.6a>6b8、(4分)如图,ΔABC中,∠A=90°,∠C=30°,BD平分∠ABC交AC于D,若BD=2,则ΔABC的面积为()A.332 B.33 C.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,将正方形放在平面直角坐标系中,是坐标原点,点的坐标为,则点的坐标为__________.10、(4分)如图是甲、乙两人10次射击成绩的条形统计图,则甲、乙两人成绩比较稳定的是________.11、(4分)命题“全等三角形的对应角相等”的逆命题是____________________________这个逆命题是______(填“真”或“假”)12、(4分)如图的直角三角形中未知边的长x=_______.13、(4分)已知菱形一内角为,且平分这个内角的一条对角线长为8,则该菱形的边长__________.三、解答题(本大题共5个小题,共48分)14、(12分)某中学初二年级抽取部分学生进行跳绳测试,并规定:每分钟跳次以下为不及格;每分钟跳次的为及格;每分钟跳次的为中等;每分钟跳次的为良好;每分钟跳次及以上的为优秀.测试结果整理绘制成如下不完整的统计图.请根据图中信息,解答下列问题:(1)参加这次跳绳测试的共有人;(2)补全条形统计图;(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是;(4)如果该校初二年级的总人数是人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.15、(8分)9岁的小芳身高1.36米,她的表姐明年想报考北京的大学.表姐的父母打算今年暑假带着小芳及其表姐先去北京旅游一趟,对北京有所了解.他们四人7月31日下午从无锡出发,1日到4日在北京旅游,8月5日上午返回无锡.无锡与北京之间的火车票和飞机票价如下:火车(高铁二等座)全票524元,身高1.1~1.5米的儿童享受半价票;飞机(普通舱)全票1240元,已满2周岁未满12周岁的儿童享受半价票.他们往北京的开支预计如下:假设他们四人在北京的住宿费刚好等于上表所示其他三项费用之和,7月31日和8月5日合计按一天计算,不参观景点,但产生住宿、伙食、市内交通三项费用.(1)他们往返都坐火车,结算下来本次旅游总共开支了13668元,求x,y的值;(2)若去时坐火车,回来坐飞机,且飞机成人票打五五折,其他开支不变,他们准备了14000元,是否够用?如果不够,他们准备不再增加开支,而是压缩住宿的费用,请问他们预定的标准间房价每天不能超过多少元?16、(8分)如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=1.(1)求CD,AD的值;(2)判断△ABC的形状,并说明理由.17、(10分)如图,在中,,CD平分,,,E,F是垂足,那么四边形CEDF是正方形吗?说出理由.18、(10分)如图,函数与的图象交于.(1)求出,的值.(2)直接写出不等式的解集;(3)求出的面积B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在菱形ABCD中,AC交BD于P,E为BC上一点,AE交BD于F,若AB=AE,,则下列结论:①AF=AP;②AE=FD;③BE=AF.正确的是______(填序号).20、(4分)某市对400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为_____.21、(4分)如图,在平面直角坐标系中,平行四边形OABC的边OA在x轴的正半轴上,A、C两点的坐标分别为(2,0)、(1,2),点B在第一象限,将直线y=-2x沿y轴向上平移m(m>0)个单位.若平移后的直线与边BC有交点,则m的取值范围是_____________.22、(4分)为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,则估计湖里约有鱼_______条.23、(4分)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________度.二、解答题(本大题共3个小题,共30分)24、(8分)在正方形网格中,点A、B、C都是格点,仅用无刻度的直尺按下列要求作图.(1)在图1中,作线段的垂直平分线;(2)在图2中,作的角平分线.25、(10分)在平面直角坐标系中,直线()与直线相交于点P(2,m),与x轴交于点A.(1)求m的值;(2)过点P作PB⊥x轴于B,如果△PAB的面积为6,求k的值.26、(12分)如图,在▱ABCD中,AC为对角线,BF⊥AC,DE⊥AC,F、E为垂足,求证:BF=DE.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
因为k=3>0,b=-2<0,根据一次函数y=kx+b(k≠0)的性质得到图象经过第一、三象限,图象与y轴的交点在x轴下方,于是可判断一次函数y=3x-2的图象不经过第二象限.【详解】对于一次函数y=3x-2,∵k=3>0,∴图象经过第一、三象限;又∵b=-2<0,∴一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第四象限,∴一次函数y=3x-2的图象不经过第二象限.故选B.本题考查了一次函数y=kx+b(k≠0)的性质:当k<0,图象经过第二、四象限,y随x的增大而减小;当k>0,经图象第一、三象限,y随x的增大而增大;当b>0,一次函数的图象与y轴的交点在x轴上方;当b<0,一次函数的图象与y轴的交点在x轴下方.2、C【解析】
先将两边同时平方可得:a2-2ab+b2=4,再将a2+b2=18代入可得ab的值,从而得到5ab的值.【详解】因为所以a2-2ab+b2=4,又因为,所以-2ab=-14,所以ab=7,所以5ab=35.故选:C.考查了运用完全平方公式变形求值,解题关键是对进行变形,进而求得ab的值.3、C【解析】
2016年为10.8万人次,平均增长率为x,17年就为10.8(1+x),则18年就为10.8(1+x)2即可得出【详解】2016年为10.8万人次,2018年为16.8万人次,,平均增长率为x,则10.8(1+x)2=16.8,故选C熟练掌握增长率的一元二次方程列法是解决本题的关键4、D【解析】
求出BE=2AE,根据翻折的性质可得PE=BE,由此得出∠APE=30°,然后求出∠AEP=60°,再根据翻折的性质求出∠BEF=60°,根据直角三角形两锐角互余求出∠EFB=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得EF=2BE,判断出①正确;利用30°角的正切值求出PF=PE,判断出②错误;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判断出③正确;求出∠PBF=∠PFB=60°,然后得到△PBF是等边三角形,故④正确.【详解】∵AE=AB,∴BE=2AE,由翻折的性质得:PE=BE,∴∠APE=30°,∴∠AEP=90°﹣30°=60°,∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,∴∠EFB=90°﹣60°=30°,∴EF=2BE,故①正确;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF<2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③正确;由翻折的性质,∠EFB=∠EFP=30°,则∠BFP=30°+30°=60°,∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°,∴△PBF是等边三角形,故④正确.故选D.本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等边三角形的判定等知识,熟记各性质并准确识图是解题的关键.5、C【解析】
由四边形ABCD是平行四边形,可得OA=OC,又由点E,F分别是边AD,AB的中点,可得AH:AO=1:2,即可得AH:AC=1:4,继而求得答案.【详解】解:∵四边形ABCD是平行四边形,
∴OA=OC,
∵点E,F分别是边AD,AB的中点,
∴EF∥BD,
∴△AFH∽△ABO,
∴AH:AO=AF:AB,故选:C此题考查了平行四边形的性质、三角形中位线的性质以及相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.6、C【解析】
先根据旋转的性质得AB=AD,∠BAD=50°,则利用等腰三角形的性质得到∠ABD=∠ADB,然后根据三角形内角和计算∠ABD的度数.【详解】∵△ABC绕点A按逆时针旋转50°后,得到△ADC′,∴AB=AD,∠BAD=50°,∴∠ABD=∠ADB,∴∠ABD=(180°-50°)=65°.故选:C.本题考查了旋转的性质、等腰三角形的性质、三角形内角和定理;熟练掌握旋转的性质,得到△ABD为等腰三角形是解决问题的关键.7、A【解析】
利用不等式的性质判断即可.【详解】解:A、在不等式a<b的两边同时减去3,不等式仍成立,即a﹣3<b﹣3,原变形正确,故本选项符合题意.B、在不等式a<b的两边同时除以2,不等式仍成立,即<,原变形错误,故本选项不符合题意.C、在不等式a<b的两边同时乘以﹣1,不等号方向改变,即﹣a>﹣b,原变形错误,故本选项不符合题意.D、在不等式a<b的两边同时乘以6,不等式仍成立,即6a<6b,原变形错误,故本选项不符合题意.故选:A.此题考查了不等式的性质,熟练掌握不等式的性质是解本题的关键.8、A【解析】
由BD平分∠ABC可得∠1=∠2=30°,故BD=CD=2,利用30°的RtΔABD可得AD=12BD=1可得AC=AD+CD=3,根据勾股定理可得:AB=3【详解】∵ΔABC中,∠A=90°,∠C=30°∴∠ABC=60°∵BD平分∠ABC∴∠1=∠2∴∠1=∠C∴BD=CD=2∵BD=2,∠1=30°∴AD=12∴AC=AD+CD=1+2=3根据勾股定理可得:AB=3∴S△ABC故选:A本题考查了勾股定理及30°的直角三角形所对的直角边是斜边的一半及三角形的面积公式,掌握勾股定理及30°的直角三角形的性质是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
过点E作EI⊥x轴于I,过点G作GH⊥x轴于H,根据同角的余角相等求出∠OEI=∠GOH,再利用“角角边”证明△EOI和△OGH全等,根据全等三角形对应边相等可得OH=EI,EI=OI,然后根据点G在第二象限写出坐标即可.【详解】解:过点E作EI⊥x轴于I,过点G作GH⊥x轴于H,如图所示:∵四边形OEFG是正方形,∴OE=OG,∠EOG=90°,∴∠GOH+∠EOI=90°,又∵∠OEI+∠EOI=90°,∴∠OEI=∠GOH,在△EOI和△OGH中,,∴△EOI≌△OGH(AAS),∴OH=EI=3,GH=OI=2,∵点G在第二象限,∴点G的坐标为(-3,2).故答案为(-3,2).本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键.10、乙【解析】∵通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,∴甲的方差大于乙的方差,∴乙的成绩比较稳定.故答案为乙.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11、对应角相等的三角形是全等三角形假【解析】
把原命题的题设和结论作为新命题的结论和题设就得逆命题.【详解】命题“全等三角形的对应角相等”的逆命题是“对应角相等的三角形是全等三角形”;对应角相等的三角形不一定是全等三角形,这个逆命题是假命题.故答案为(1).对应角相等的三角形是全等三角形(2).假本题考核知识点:互逆命题.解题关键点:注意命题的形式.12、【解析】
根据勾股定理求解即可.【详解】x=.故答案为:.本题考查了勾股定理,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.13、8【解析】
根据已知可得该对角线与菱形的一组邻边构成一个等边三角形,从而可求得菱形的边长.【详解】菱形的一个内角为120°,则邻角为60°则这条对角线和一组邻边组成等边三角形,可得边长为8cm.故答案为8.此题考查菱形的性质,对角线与菱形的一组邻边构成一个等边三角形是解题关键三、解答题(本大题共5个小题,共48分)14、(1)50;(2)见解析;(3)72°;(4)96人.【解析】
(1)利用条形统计图以及扇形统计图得出良好的人数和所占比例,即可得出全班人数;(2)利用(1)中所求,结合条形统计图得出优秀的人数,进而求出答案;(3)利用中等的人数,进而得出“中等”部分所对应的圆心角的度数;(4)利用样本估计总体进而利用“优秀”所占比例求出即可.【详解】(1)由扇形统计图和条形统计图可得:参加这次跳绳测试的共有:20÷40%=50(人);故答案为:50;(2)由(1)的优秀的人数为:50−3−7−10−20=10人,(3)“中等”部分所对应的圆心角的度数是:×360°=72°,故答案为:72°;(4)全年级优秀人数为:(人).此题主要考查了扇形统计图以及条形统计图和利用样本估计总体等知识,利用已知图形得出正确信息是解题关键.15、(1)x=500y=54;(2)标准间房价每日每间不能超过450【解析】
(1)结合旅游总共开支了13668元,以及他们四个人在北京的住宿费刚好等于表中所示其他三项费用之和分别得出等式,列出方程组,解得答案即可;(2)结合他们往返都坐飞机(成人票五五折),求出总费用,进而求出答案.【详解】(1)往返高铁费:(524×3+524÷2)×2=3668元依题意列方程组:2×5x=100×5×4+20y+1920解得:x=500y=54(2)往返交通费:524×3+524÷2+1240×0.55×3+1240÷2=45004500+5000+2000+1080+1920=14500>14000,不够;设预定的房间房价每天a元则4500+2000+1080+1920+10a≤14000,解得a≤450,答:标准间房价每日每间不能超过450元.点睛:本题主要考查了二元一次方程组的应用、一元一次不等式的应用,能正确地根据题意找出等量关系、不等关系,从而列出方程组、不等式是解题的关键.16、(1)12,16;(2)△ABC为直角三角形,理由见解析【解析】
(1)在直角三角形中,应用勾股定理求值即可;
(2)先计算出AC2+BC2=AB2,即可判断出△ABC为直角三角形.【详解】解:(1)∵CD⊥AB,∴△BCD和△ACD都是直角三角形,∴CD==12,AD==16;(2)△ABC为直角三角形,理由:∵AD=16,BD=1,∴AB=AD+BD=16+1=25,∵AC2+BC2=202+152=625=252=AB2,∴△ABC为直角三角形.考查了勾股定理的应用,解题关键是熟记勾股定理以及勾股定理的逆定理.17、是,理由见解析.【解析】
根据,CD平分,,,可得,,根据正方形的判定定理可得:四边形CEDF是正方形.【详解】解:四边形CEDF是正方形,理由:,CD平分,,,,,四边形CEDF是正方形,本题主要考查正方形的判定定理,解决本题的关键是要熟练掌握正方形的判定定理.18、(1),;(2);(3).【解析】
(1)先把点坐标代入求出的值,进而可得,,再把点坐标代入可得的值;(2)根据函数图象可直接得到答案:直线在直线上方的部分且即为所求;(3)首先求出、两点坐标,进而可得的面积.【详解】解:(1)过.,解得:,,,的图象过,.,解得:;(2)不等式的解集为;(3)当中,时,,,中,时,,,;的面积=.此题主要考查了一次函数图象上点的坐标特点,以及一次函数与不等式,关键是掌握函数图像上点的特征:函数图象经过的点必能满足解析式.一、填空题(本大题共5个小题,每小题4分,共20分)19、②③【解析】
根据菱形的性质可知AC⊥BD,所以在Rt△AFP中,AF一定大于AP,从而判断①;设∠BAE=x,然后根据等腰三角形两底角相等表示出∠ABE,再根据菱形的邻角互补求出∠ABE,根据三角形内角和定理列出方程,求出x的值,求出∠BFE和∠BE的度数,从而判断②③.【详解】解:在菱形ABCD中,AC⊥BD,∴在Rt△AFP中,AF一定大于AP,故①错误;∵四边形ABCD是菱形,∴AD∥BC,∴∠ABE+∠BAE+∠EAD=180°,设∠BAE=x°,则∠EAD=2x°,∠ABE=180°-x°-2x°,∵AB=AE,∠BAE=x°,∴∠ABE=∠AEB=180°-x°-2x°,由三角形内角和定理得:x+180-x-2x+180-x-2x=180,解得:x=36,即∠BAE=36°,∠BAE=180°-36°-2×36°=70°,∵四边形ABCD是菱形,∴∠BAD=∠CBD=∠ABE=36°,∴∠BFE=∠ABD+∠BAE=36°+36°=72°,∴∠BEF=180°-36°-72°=72°,∴BE=BF=AF.故③正确∵∠AFD=∠BFE=72°,∠EAD=2x°=72°∴∠AFD=∠EAD∴AD=FD又∵AD=AB=AE∴AE=FD,故②正确∴正确的有②③故答案为:②③本题考查了菱形的性质,等腰三角形的性质,熟记各性质并列出关于∠BAE的方程是解题的关键,注意:菱形的对边平行,菱形的对角线平分一组对角.20、1【解析】分析:根据频率=或频数=频率×数据总和解答.详解:由题意,该组的人数为:400×0.25=1(人).故答案为1.点睛:本题考查了频数与频率之间的计算,熟知频数、频率及样本总数之间的关系是解决本题的关键.21、4≤m≤1【解析】
设平移后的直线解析式为y=-2x+m.根据平行四边形的性质结合点O、A、C的坐标即可求出点B的坐标,再由平移后的直线与边BC有交点,可得出关于m的一元一次不等式组,解不等式组即可得出结论.【详解】设平移后的直线解析式为y=-2x+m.∵四边形OABC为平行四边形,且点A(2,0),O(0,0),C(1,2),∴点B(3,2).∵平移后的直线与边BC有交点,∴,解得:4≤m≤1.本题考查了平行四边形的性质、平移的性质以及两条直线相交的问题,解题的关键是找出关于m的一元一次不等式组.22、1500【解析】
300条鱼里有30条作标记的,则作标记的所占的比例是30÷300=10%,即所占
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农贸市场应急事件处理预案
- 科研机构成果质量奖惩管理办法
- 市政供热管网标准化方案
- 职业艺术培训服务合同
- 大型桥梁钢桁架吊装工程实施方案
- 绿色食品认证咨询服务合同
- 二零二四年度劳动合同(详细版)
- 2024版健身俱乐部会员服务合同:健身俱乐部与会员之间的服务协议
- 非营利组织教育工作者师德师风总结
- 咨询公司员工出差费用标准化制度
- 【信息技术 】计算机系统互联(第一课时)课件 2022-2023学年教科版(2019)高中信息技术必修2
- 300t双柱油压机拆装方案
- 中国湿疹诊疗指南
- 新概念英语第四册课
- GB/T 6163-2011调频广播接收机测量方法
- GB/T 6003.1-2012试验筛技术要求和检验第1部分:金属丝编织网试验筛
- GB/T 33417-2016过氧化氢气体灭菌生物指示物检验方法
- GB/T 13459-2008劳动防护服防寒保暖要求
- GB/T 1231-1991钢结构用高强度大六角头螺拴、大六角螺母、垫圈技术条件
- 公益创投项目申报书
- 立志做有理想敢担当能吃苦肯奋斗的新时代好青年PPT课件(带内容)
评论
0/150
提交评论