上海市宝山区2025届数学八上期末学业质量监测试题含解析_第1页
上海市宝山区2025届数学八上期末学业质量监测试题含解析_第2页
上海市宝山区2025届数学八上期末学业质量监测试题含解析_第3页
上海市宝山区2025届数学八上期末学业质量监测试题含解析_第4页
上海市宝山区2025届数学八上期末学业质量监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市宝山区2025届数学八上期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,,则图中全等三角形共有()A.1对 B.2对 C.3对 D.4对2.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”四个节气,其中轴对称图形是()A. B. C. D.3.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA4.下列图标中是轴对称图形的是()A. B. C. D.5.下列边长相等的正多边形能完成镶嵌的是()A.2个正八边形和1个正三角形 B.3个正方形和2个正三角形C.1个正五边形和1个正十边形 D.2个正六边形和2个正三角形6.已知A(a,b),B(c,d)是一次函数y=kx﹣3x+2图象上的不同两个点,m=(a﹣c)(b﹣d),则当m<0时,k的取值范围是()A.k<3 B.k>3 C.k<2 D.k>27.已知,则值为()A.10 B.9 C.12 D.38.如图,在△中,,将△绕点顺时针旋转,得到△,连接,若,,则线段的长为()A. B. C. D.9.如图:是的外角,平分,若,,则等于()A. B. C. D.10.若分式,则的值为()A. B. C. D.二、填空题(每小题3分,共24分)11.若,则代数式的值为___________.12.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为______.13.已知点A(-3,m)与点B(2,n)是直线y=-x+b上的两点,则m与n的大小关系是___.14.八边形的外角和等于▲°.15.如图所示,在中,,,将其折叠,使点落在上的点处,折痕为,则__________度.16.如图,在六边形,,则__________°.17.若点M(a﹣3,a+4)在x轴上,则点M的坐标是______.18.计算的结果是_____________.三、解答题(共66分)19.(10分)某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计,结果如下图.请你根据统计图中的信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应地确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?(无原图)20.(6分)如图,在中,是原点,是的角平分线.确定所在直线的函数表达式;在线段上是否有一点,使点到轴和轴的距离相等,若存在,求出点的坐标;若不存在,请说明理由;在线段上是否有一点,使点到点和点的距离相等,若存在,直接写出点的坐标;若不存在,请说明理由.21.(6分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?22.(8分)如图,已知为等边三角形,AE=CD,,相交于点F,于点Q.(1)求证:≌;(2)若,求的长.23.(8分)观察下列两个数的积(这两个数的十位上的数相同,个位上的数的和等于),你发现结果有什么规律?;;;;(1)设这两个数的十位数字为,个位数字分别为和,请用含和的等式表示你发现的规律;(2)请验证你所发现的规律;(3)利用你发现的规律直接写出下列算式的答案.;;;.24.(8分)小明从家出发沿一条笔直的公路骑自行车前往图书馆看书,他与图书馆之间的距离y(km)与出发时间t(h)之间的函数关系如图1中线段AB所示,在小明出发的同时,小明的妈妈从图书馆借书结束,沿同一条公路骑电动车匀速回家,两人之间的距离s(km)与出发时间t(h)之间的函数关系式如图2中折线段CD﹣DE﹣EF所示.(1)小明骑自行车的速度为km/h、妈妈骑电动车的速度为km/h;(2)解释图中点E的实际意义,并求出点E的坐标;(3)求当t为多少时,两车之间的距离为18km.25.(10分)如图,是等腰直角三角形,,点是的中点,点,分别在,上,且,探究与的关系,并给出证明.26.(10分)已知直线:与轴交于点,直线:与轴交于点,且直线与直线相交所形成的的角中,其中一个角的度数是75°,则线段长为__.

参考答案一、选择题(每小题3分,共30分)1、C【分析】先利用SAS证出△ABD≌△CDB,从而得出AD=CB,再利用SSS证出△ABC≌△CDA,从而得出∠ABO=∠CDO,最后利用AAS证出△ABO≌△CDO,即可得出结论.【详解】解:在△ABD和△CDB中∴△ABD≌△CDB∴AD=CB在△ABC和△CDA中∴△ABC≌△CDA∴∠ABO=∠CDO在△ABO和△CDO中∴△ABO≌△CDO共有3对全等三角形故选C.【点睛】此题考查的是全等三角形的判定及性质,掌握全等三角形的各个判定定理是解决此题的关键.2、D【分析】根据轴对称图形的概念判断即可.【详解】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.3、D【详解】试题分析:△ABC和△CDE是等边三角形BC=AC,CE=CD,即在△BCD和△ACE中△BCD≌△ACE故A项成立;在△BGC和△AFC中△BGC≌△AFCB项成立;△BCD≌△ACE,在△DCG和△ECF中△DCG≌△ECFC项成立D项不成立.考点:全等三角形的判定定理.4、D【解析】根据轴对称图形的定义“如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形”逐项判断即可.【详解】A、不是轴对称图形,此项不符题意B、不是轴对称图形,此项不符题意C、不是轴对称图形,此项不符题意D、是轴对称图形,此项符合题意故选:D.【点睛】本题考查了轴对称图形的定义,熟记定义是解题关键.5、D【分析】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。【详解】A.2个正八边形和1个正三角形:135°+135°+60°=330°,故不符合;B.3个正方形和2个正三角形:90°+90°+90°+60°+60°=390°,故不符合;C.1个正五边形和1个正十边形:108°+144°=252°,故不符合;D.2个正六边形和2个正三角形:120°+120°+60°+60°=360°,符合;故选D.【点睛】本题考查多边形的内角,熟练掌握多边形的内角的度数是解题关键.6、A【分析】将点A,点B坐标代入解析式可求k−1=,即可求解.【详解】∵A(a,b),B(c,d)是一次函数y=kx﹣1x+2图象上的不同两个点,∴b=ka﹣1a+2,d=kc﹣1c+2,且a≠c,∴k﹣1=.∵m=(a﹣c)(b﹣d)<0,∴k<1.故选:A.【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,求出k−1=是关键,是一道基础题.7、A【分析】由题意根据等式和分式的基本性质以及完全平方公式对式子进行变形,进而整体代入求解.【详解】解:由,可知,已知,等式两边同时除以可得:,将,代入,所以.故选:A.【点睛】本题考查完全平方公式,结合等式和分式的基本性质运用整体替换的思想进行分析是解题的关键.8、A【分析】根据旋转的性质可知:DE=BC=1,AB=AD,应用勾股定理求出AB的长;又由旋转的性质可知:∠BAD=90°,再用勾股定理即可求出BD的长【详解】解:由旋转的性质得到:,∠BAD=90°∴AC=AE=3,BC=DE=1,AB=AD,∵∠ACB=90°∴AB=AD==在Rt△BAD中,根据勾股定理得:BD===2故选A9、D【分析】根据三角形外角性质求出,根据角平分线定义求出即可.【详解】∵,

∴,

∵平分,

∴,

故选:D.【点睛】本题考查了角平分线定义和三角形外角性质,能熟记三角形外角性质的内容是解此题的关键.10、D【分析】根据分子为零且分母不为零分式的值为零,可得答案.【详解】解:由题意,得且,解得,故选:D.【点睛】本题考查了分式值为零的条件,利用分子为零且分母不为零得出且是解题关键.二、填空题(每小题3分,共24分)11、1【分析】将因式分解,然后代入求值即可.【详解】解:==将代入,得原式=故答案为:1.【点睛】此题考查的是因式分解,掌握利用提取公因式法和完全平方公式因式分解是解决此题的关键.12、1【分析】连接,由于是等腰三角形,点是边的中点,故,根据三角形的面积公式求出的长,再根据是线段的垂直平分线可知,点关于直线的对称点为点,故的长为的最小值,由此即可得出结论.【详解】解:连接,是等腰三角形,点是边的中点,,,解得,是线段的垂直平分线,点关于直线的对称点为点,的长为的最小值,的周长最短.故答案为:1.【点睛】本题考查的是轴对称最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.13、m>n【分析】先根据直线的解析式判断出函数的增减性,再根据一次函数的性质即可得出结论.【详解】∵直线y=−x+b中,k=−<0,∴此函数y随着x增大而减小.∵−3<2,∴m>n.故填:m>n.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.14、360【分析】根据多边形的外角和等于360°进行解答.【详解】根据多边形的外角和等于360°,∴八边形的外角和等于360°15、1【分析】根据已知条件得出∠A=40°,∠ACB=80°,再由折叠的性质可得∠CED=∠B,最后根据三角形的外角的性质即可求出∠EDA的度数.【详解】解∵,由∠B+∠ACB+∠A=180°可得:60°+2∠A+∠A=180°∴∠A=40°,∠ACB=80°,由折叠可知:∠CED=∠B=60°,又∵∠CED是△AED的外角,∴∠CED=∠A+∠EDA,即解得:故答案为:1.【点睛】本题考查了三角形中的折叠问题,三角形的内角和、外角的性质,解题的关键是根据题意对角进行运算求解.16、180【分析】根据多边形的外角和减去∠B和∠A的外角的和即可确定四个外角的和.【详解】∵AF∥BC,∴∠B+∠A=180°,∴∠B与∠A的外角和为180°,∵六边形ABCDEF的外角和为360°,∴∠1+∠2+∠3+∠4=180°,故答案为:180°.【点睛】本题考查了多边形的外角和定理,解题的关键是发现∠B和∠C的外角的和为180°,难度中等.17、(-7,0)【分析】先根据x轴上的点的坐标的特征求得a的值,从而可以得到结果.【详解】由题意得a-3=0,a=3,则点M的坐标是(-7,0).【点睛】解题的关键是熟练掌握x轴上的点的纵坐标为0,y轴上的点的横坐标为0.18、【分析】根据积的乘方的逆运算,把原式变形为指数相同的,然后利用有理数的乘方和乘法法则进行计算即可.【详解】原式,故答案为:.【点睛】本题考查了积的乘方公式,逆用公式是解题的关键,注意负数的奇次方是负数.三、解答题(共66分)19、(1)(2)该学校学生最喜欢借阅漫画类图书.(3)漫画类240(本),科普类:210(本),文学类:60(本),其它类:90(本).【解析】解:(1)如图所示一周内该校学生从图书馆借出各类图书数量情况统计图(2)该学校学生最喜欢借阅漫画类图书.(3)漫画类:600×40%=240(本),科普类:600×35%=210(本),文学类:600×10%=60(本),其它类:600×15%=90(本).20、(1);(2)存在,;(3)存在,,【分析】(1)设的表达式为:,将A、B的坐标代入即可求出直线AB的解析式;(2)过点作,交于,根据角平分线的性质可得,然后根据勾股定理求出AB,利用即可求出点C的坐标,利用待定系数法求出AC的解析式,设,代入解析式中即可求出点P的坐标;(3)根据AC的解析式设点Q的坐标为(b,),然后利用平面直角坐标系中任意两点之间的距离公式求出QA和QB,然后利用QA=QB列方程即可求出点Q的坐标.【详解】由题意得,设的表达式为:将代入得,解得:存在过点作交于是角平分线在Rt△AOB中,由题意得即有解得∴点C的坐标为:设直线AC的表达式为将代入,得解得:的表达式为设,代入得,存在点Q在AC上,设点Q的坐标为(b,)∴QA=,QB=∵QA=QB∴解得:b=∴【点睛】此题考查的是一次函数与图形的综合问题,掌握利用待定系数法求一次函数的解析式、勾股定理、角平分线的性质和平面直角坐标系中任意两点之间的距离公式是解决此题的关键.21、(1)乙队单独施工需要1天完成;(2)乙队至少施工l8天才能完成该项工程.【解析】(1)先求得甲队单独施工完成该项工程所需时间,设乙队单独施工需要x天完成该项工程,再根据“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;(2)设乙队施工y天完成该项工程,根据题意列不等式解不等式即可.【详解】(1)由题意知,甲队单独施工完成该项工程所需时间为1÷=90(天).设乙队单独施工需要x天完成该项工程,则,去分母,得x+1=2x.解得x=1.经检验x=1是原方程的解.答:乙队单独施工需要1天完成.(2)设乙队施工y天完成该项工程,则1-解得y≥2.答:乙队至少施工l8天才能完成该项工程.22、(1)证明见解析;(2)AD=1.【分析】(1)根据等边三角形的性质,通过全等三角形的判定定理SAS证得结论;(2)利用(1)的结果的结果求得∠FBQ=30°,所以由“30度角所对的直角边是斜边的一半”得到BF=2FQ=8,则易求BE=BF+EF=8+1=1.【详解】(1)证明:∵△ABC为等边三角形,

∴AB=CA,∠BAE=∠C=60°,

在△AEB与△CDA中,,

∴△AEB≌△CDA(SAS),

(2)由(1)可知≌,∴,AD=BE又,BF=2FQ=8,∴BE=BF+EF=8+1=1∴AD=1【点睛】本题考查了全等三角形的判定与性质、含30度角的直角三角形,在判定三角形全等时,关键是选择恰当的判定条件.23、(1)(10x+y)(10x+10-y)=100x(x+1)+y(10-y);(2)见解析;(3)3016;4221;5625;1.【分析】(1)由题意得出每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的十位和个位,据此可得出结果;

(2)利用整式的运算法则化简等式的左右两边,化简结果相等即可得出结论;(3)根据(1)中的结论计算即可.【详解】解:(1)由已知等式知,每两个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的十位和个位,∴(10x+y)(10x+10-y)=100x(x+1)+y(10-y);(2)∵等式左边=(10x+y)(10x+10-y)=(10x+y)[(10x-y)+10]=(10x+y)(10x-y)+10(10x+y)=100x2-y2+100x+10y;等式右边=100x(x+1)+y(10-y)=100x2+100x+10y-y2=100x2-y2+100x+10y,∴(10x+y)(10x+10-y)=100x(x+1)+y(10-y);(3)根据(1)中的规律可知,3016;4221;5625;1.故答案为:3016;4221;5625;1.【点睛】本题考查了规律型中数字的变化类,根据两数乘积的变化找出变化规律是解题的关键.24、(1)16,20;(2)点E表示妈妈到了甲地,此时小明没到,E(,);(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论