版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省宝丰八年级数学第一学期期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列运算中正确的是()A.a5+a5=2a10 B.3a3•2a2=6a6C.a6÷a2=a3 D.(﹣2ab)2=4a2b22.(2016河南2题)某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为()A. B. C. D.3.在下面四个图案中,如果不考虑图中的文字和字母,那么不是轴对称图形的是()A. B. C. D.4.下列各数中是无理数的是()A. B. C. D.5.学校举行图书节义卖活动,将所售款项捐给其他贫困学生,在这次义卖活动中,某班级售书情况如下表:售价元元元元数目本本本本下列说法正确的是()A.该班级所售图书的总收入是元 B.在该班级所传图书价格组成的一组数据中,中位数是元C.在该班级所售图书价格组成的一组数据中,众数是元 D.在该班级所售图书价格组成的一组数据中,平均数是元6.如图,中,于D,于E,AD交BE于点F,若,则等于(
)A. B. C. D.7.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是()A.52 B.68 C.72 D.768.点P在AOB的平分线上,点P到OA边的距离等于4,点Q是OB边上的任意一点,则下列选项正确的是()A. B. C. D.9.如图,为的角平分线,,过作于,交的延长线于,则下列结论:①;②;③;④其中正确结论的序号有()A.①②③④ B.②③④ C.①②③ D.①②④10.如图,OC平分∠MON,P为OC上一点,PA⊥OM,PB⊥ON,垂足分别为A、B,连接AB,得到以下结论:(1)PA=PB;(2)OA=OB;(3)OP与AB互相垂直平分;(4)OP平分∠APB,正确的个数是()A.1 B.2 C.3 D.411.已知点(,3),B(,7)都在直线上,则的大小关系为()A. B. C. D.不能比较12.下列各数是无理数的是()A.3.14 B.-π C. D.二、填空题(每题4分,共24分)13.在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过A(a,m),B(a+1,n)两点,则m_____n.(填“>”或“<”)14.已知和一点,,,,则______.15.已知一次函数与的图像交点坐标为(−1,2),则方程组的解为____.16.A(3,y1),B(1,y2)是直线y=kx+3(k>0)上的两点,则y1____y2(填“>”或“<).17.已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a﹣b﹣2的值等于.18.如图,点P是∠AOB的角平分线上一点,PD⊥OA于点D,CE垂直平分OP,若∠AOB=30°,OE=4,则PD=______.三、解答题(共78分)19.(8分)请阅读下列材料,并完成相应的任务.任务:(1)利用上述方法推导立方和公式(从左往右推导);(2)已知,求的值.20.(8分)如图,把一张长方形纸片ABCD沿EF折叠,点C与点A重合,点D落在点G处.若长方形的长BC为16,宽AB为8,求:(1)AE和DE的长;(2)求阴影部分的面积.21.(8分)如图,在中,的平分线与的外角平分线相交于点,分别交直线、于点、.(1)如图1,当点在边上时,求证:;(2)如图2,当点在延长线上时,直接写出、、之间的等量关系.(不必证明)22.(10分)如图,在平面直角坐标系中,直线与轴交于点,点在直线上,点是线段上的一个动点,过点作轴交直线点,设点的横坐标为.(1)的值为;(2)用含有的式子表示线段的长;(3)若的面积为,求与之间的函数表达式,并求出当最大时点的坐标;(4)在(3)的条件下,把直线沿着轴向下平移,交轴于点,交线段于点,若点的坐标为,在平移的过程中,当时,请直接写出点的坐标.23.(10分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是.(1)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长24.(10分)如图,△ABC中,AB=AC.按要求解答下面问题:(1)尺规作图:(保留作图痕迹,并把作图痕迹用黑色签字笔描黑)①作∠BAC的平分线AD交BC于点D;②作边AB的垂直平分线EF,EF与AD相交于点P;③连结PB、PC.(2)根据(1)中作出的正确图形,写出三条线段PA、PB、PC之间的数量关系.25.(12分)(1)因式分解:(2)整式计算:26.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.
参考答案一、选择题(每题4分,共48分)1、D【解析】根据整式运算即可求出答案.【详解】A.a5+a5=2a5,故A错误;B.3a3•2a2=6a5,故B错误;C.a6÷a2=a4,故C错误;故选D.【点睛】此题考查整式的混合运算,解题关键在于掌握运算法则2、A【详解】略3、B【解析】对称轴是两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后重合.根据轴对称图形的概念,A、C、D都是轴对称图形,B不是轴对称图形,故选B4、C【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】A.3.14是有限小数,属于有理数;B.=2,是整数,属于有理数;C.是无理数;D.=4,是整数,属于有理数;故选C.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.5、A【分析】把所有数据相加可对A进行判断;利用中位数和众数的定义对B、C进行判断;利用平均数的计算公式计算出这组数据的平均,从而可对D进行判断.【详解】A、该班级所售图书的总收入为3×14+4×11+5×10+6×15=226,所以A选项正确;B、共50本书,第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B选项错误;C、这组数据的众数为6,所以C选项错误;D、这组数据的平均数为,所以D选项错误.故选:A.【点睛】本题考查计算中位数,众数和平均数,熟练掌握它们的计算方法是解题的关键.6、A【分析】根据垂直的定义得到∠ADB=∠BFC=90°,得到∠FBD=∠CAD,证明△FDB≌△CAD,根据全等三角形的性质解答即可.【详解】解:∵AD⊥BC,BE⊥AC,
∴∠ADB=∠BEC=90°,
∴∠FBD=∠CAD,
在△FDB和△CAD中,∴△FDB≌△CDA,
∴DA=DB,
∴∠ABC=∠BAD=45°,
故选:A.【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.7、D【分析】先根据勾股定理求出BD的长度,然后利用外围周长=即可求解.【详解】由题意可知∵∴∴风车的外围周长是故选:D.【点睛】本题主要考查勾股定理,掌握勾股定理是解题的关键.8、B【分析】根据角平分线的性质可知点P到OB边的距离等于4,再根据点到直线的距离垂线段最短即可得出结论.【详解】解:∵点P在AOB的平分线上,∴点P到OA边的距离等于点P到OB边的距离等于4,∵点Q是OB边上的任意一点,∴(点到直线的距离,垂线段最短).故选:B.【点睛】本题考查角平分线的性质,点到直线的距离.理解角平分线上的点到角两边距离相等是解题关键.9、A【分析】根据角平分线上的点到角的两边距离相等可得,再利用“”证明和全等,根据全等三角形对应边相等可得,利用“”证明和全等,根据全等三角形对应边相等可得,然后求出;根据全等三角形对应角相等可得,利用“8字型”证明;,再根据全等三角形对应角相等可得,然后求出.【详解】解:平分,,,,在和中,,,故①正确;,在和中,,,,,故②正确;,,设交于O,,,故③正确;,,,,,,故④正确;综上所述,正确的结论有①②③④共4个.故选:.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并准确识图判断出全等的三角形是解题的关键,难点在于需要二次证明三角形全等.10、C【分析】根据角平分线上的点到角的两边距离相等可得PA=PB,再利用“HL”证明Rt△APO和Rt△BPO全等,根据全等三角形对应角相等可得,全等三角形对应边相等可得OA=OB.【详解】解:∵OP平分∠AOB,PA⊥OA,PB⊥OB,∴PA=PB,故(1)正确;在Rt△APO和Rt△BPO中,,∴Rt△APO≌Rt△BPO(HL),∴∠APO=∠BPO,OA=OB,故(2)正确,∴PO平分∠APB,故(4)正确,OP垂直平分AB,但AB不一定垂直平分OP,故(3)错误,故选:C.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质与判定方法是解题的关键11、A【分析】根据一次函数的性质进行求解即可.【详解】∵∴∴y随着x的增大而减小∴,故选:A.【点睛】本题主要考查了一次函数的性质,熟练掌握一次函数的增减性是解决本题的关键.12、B【分析】根据无理数的定义判断.【详解】A、3.14是有限小数,是有理数,故不符合题意;B、-π是无限不循环小数,是无理数,故符合题意;C、是无限循环小数,是有理数,故不符合题意;D、=10,是有理数,故不符合题意;故选B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.二、填空题(每题4分,共24分)13、>【解析】将点A,点B坐标代入可求m,n的值,即可比较m,n的大小.【详解】解:∵一次函数y=﹣2x+1的图象经过A(a,m),B(a+1,n)两点,∴m=﹣2a+1,n=﹣2a﹣1∴m>n故答案为>【点睛】本题考查了一次函数图象上点的坐标特征,熟练掌握函数图象上的点的坐标满足函数解析式.14、40或80【分析】分两种情形:当点O在△ABC内部时或外部时分别求解.【详解】如图,当点O在△ABC内部时,
∵OA=OB=OC,,,
∴∠OAB=∠OBA=20°,∠OBC=∠OCB=30°,
∴∠AOC=∠1+∠2=∠OAB+∠OBA+∠OBC+∠OCB=100°,∴∠OCA==40°;
如图,当点O在△ABC外部时,
∵OA=OB=OC,,,
∴∠OAB=∠OBA=20°,∠OBC=∠OCB=30°,
∴∠AOC=∠DOC-∠DOA=∠OBC+∠OCB-(∠OAB+∠OBA),∴∠OCA==80°.故答案为:40或80.【点睛】本题考查了等腰三角形的性质,三角形的外角性质等知识,解题的关键是灵活运用所学知识解决问题.15、.【分析】直接根据一次函数和二元一次方程组的关系求解.【详解】解:∵一次函数与的图象的交点的坐标为(−1,2),
∴方程组的解是.【点睛】本题考查了一次函数和二元一次方程(组)的关系:要准确的将一次函数问题的条件转化为二元一次方程(组),注意自变量取值范围要符合实际意义.16、>.【分析】由k>0,利用一次函数的性质可得出y值随x值的增大而增大.再结合3>1即可得出y1>y1.【详解】解:∵k>0,∴y值随x值的增大而增大.又∵3>1,∴y1>y1.故答案为:>.【点睛】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.17、﹣5【分析】试题分析:∵点P(a,b)在一次函数y=4x+3的图象上,∴b=4a+3∴4a﹣b﹣2=4a﹣(4a+3)﹣2=﹣5,即代数式4a﹣b﹣2的值等于﹣5【详解】请在此输入详解!18、1【解析】过点P作PF⊥OB于点F,由角平分线的性质知:PD=PF,所以在直角△PEF中求得PF的长度即可.【详解】解:如图,过点P作PF⊥OB于点F,∵点P是∠AOB的角平分线上一点,PD⊥OA于点D,∴PD=PF,∠AOP=∠BOP=∠AOB=15°.∵CE垂直平分OP,∴OE=OP.∴∠POE=∠EPO=15°.∴∠PEF=1∠POE=30°.∴PF=PE=OE=1.则PD=PF=1.故答案是:1.【点睛】考查了角平分线的性质,线段垂直平分线的性质,由已知能够注意到PD=PF是解决的关键.三、解答题(共78分)19、(1)推导见解析;(2),.【分析】(1)应用添项办法进行因式分解可得:;(2)根据配方法和立方差公式可得.【详解】解:解:【点睛】考核知识点:因式分解应用.灵活运用因式分解方法转化问题是关键.20、(1)DE=6,AE=10;(2)阴影部分的面积为.【分析】(1)设,则,依据勾股定理列方程,即可得到AE和DE的长;(2)过G作于M,依据面积法即可得到GM的长,进而得出阴影部分的面积.【详解】(1)由折叠可得,,设,则,∵在中,,∴,解得x=6,∴DE=6,AE=10;(2)如下图所示,过G作GM⊥AD于M,∵GE=DE=6,AE=10,AG=8,且,∴,∴,即阴影部分的面积为.【点睛】本题主要考查了折叠,勾股定理以及三角形面积的求法,熟练掌握三角形的综合应用方法是解决本题的关键.21、(1)证明见解析;(2).【分析】(1)由BD平分∠ABC,得到∠ABD=∠DBC,根据平行线的性质得到∠EDB=∠DBC,由等腰三角形的判定定理得到BE=ED;同理可证:CF=DF,由线段的和差和等量代换即可得到结论;(2)同(1)可得,,从而可得出结论.【详解】(1)证明:,,又平分,,,.同理可证:,;(2)解:同(1)可得,,,∴.即、、之间的等量关系为:.【点睛】本题考查了等腰三角形的判定和性质,平行线的判定和性质,熟练掌握等腰三角形的判定和性质是解题的关键.22、(1)7;(2);(3),;(4)【分析】(1)直接把点B坐标代入y=x+2求出n的值即可;(2)分别用m表示出点C和点P的坐标,再利用两点间距离公式求出CP的长即可;(3)根据图形得的面积的面积,通过计算可得S,当点与点重合时,有最大值,即时,有最大值,将m=5代求解即可;(4)求出直线DM的解析,进而得出直线MN的解析式,然后把m=5代入求值即可得到结论.【详解】(1)把点代入直线y=x+2得:n=5+2=,故答案为:7;(2)点的横坐标为,点,轴交直线于点,点,;(3)直线与轴交于点,点,的面积的面积,随的增大而增大,点是线段上的一个动点,当点与点重合时,有最大值,即时,有最大值.当时,点;(4)如图,∵直线沿着轴向下平移,交轴于点,交线段于点,∴设MN所在直线解析式为:∵∠DMN=90°,根据两条直线互相垂直,k的值互为相反数,且垂足为M,故可设直线DM的解析式为:y=-x+b,∵点的坐标为,∴,解得,b=,∴直线MN的解析式为:又点N的横坐标为5,∴当x=5时,y=,∴点.【点睛】本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征,解题的关键是:准确画图,并利用数形结合的思想解决问题.23、解:(1)①DE∥AC.②.(1)仍然成立,证明见解析;(3)3或2.【详解】(1)①由旋转可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等边三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②过D作DN⊥AC交AC于点N,过E作EM⊥AC交AC延长线于M,过C作CF⊥AB交AB于点F.由①可知:△ADC是等边三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,
∵△DEC是由△ABC绕点C旋转得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
∵在△ACN和△DCM中,,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S1;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此时S△DCF1=S△BDE;
过点D作DF1⊥BD,
∵∠ABC=20°,F1D∥BE,
∴∠F1F1D=∠ABC=20°,
∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,
∴∠F1DF1=∠ABC=20°,
∴△DF1F1是等边三角形,
∴DF1=DF1,过点D作DG⊥BC于G,
∵BD=CD,∠ABC=20°,点D是角平分线上一点,
∴∠DBC=∠DCB=×20°=30°,BG=BC=,
∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,
∠CDF1=320°-150°-20°=150°,
∴∠CDF1=∠CDF1,
∵在△CDF1和△CDF1中,,
∴△CDF1≌△CDF1(SAS),
∴点F1也是所求的点,
∵∠ABC=20°,点D是角平分线上一点,DE∥AB,
∴∠DBC=∠BDE=∠A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高校党建共建创新发展方案
- 线上教育绿色学习方案
- 可再生能源灌封机清洁验证方案
- 实验室机器人市场发展预测和趋势分析
- 婴儿头部支撑垫产业规划专项研究报告
- 各类乐器在课堂中的应用方案
- 印刷的票产业规划专项研究报告
- 2024年山东省高考地理试卷真题(含答案逐题解析)
- 海洋石油平台燃气安全应急方案
- 外墙干挂石材施工监理方案
- 期中 (试题) -2024-2025学年译林版(三起)(2024)英语三年级上册
- MOOC 新时代中国特色社会主义理论与实践-武汉理工大学 中国大学慕课答案
- MOOC 创新与创业管理-南京师范大学 中国大学慕课答案
- 体育教育生涯发展报告
- 会计专业工作简历表(中级)
- 如何做好群团工作
- 保险代理业务及台帐管理制度
- 媒介文化教程第六讲 奇观社会与媒体奇观
- 毕业设计(论文)基于单片机的智能水族箱控制系统鱼缸
- 罐箱装卸货操作指南
- 青海大学研究生导师简介(精品课件)
评论
0/150
提交评论