2025届辽宁省昌图县联考八年级数学第一学期期末调研试题含解析_第1页
2025届辽宁省昌图县联考八年级数学第一学期期末调研试题含解析_第2页
2025届辽宁省昌图县联考八年级数学第一学期期末调研试题含解析_第3页
2025届辽宁省昌图县联考八年级数学第一学期期末调研试题含解析_第4页
2025届辽宁省昌图县联考八年级数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届辽宁省昌图县联考八年级数学第一学期期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,已知等边三角形ABC边长为2,两顶点A、B分别在平面直角坐标系的x轴负半轴、轴的正半轴上滑动,点C在第四象限,连接OC,则线段OC长的最小值是()A.1 B.3 C.3 D.2.若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=33.下列运算中,不正确的是()A. B. C. D.4.某校对1200名女生的身高进行了测量,身高在,这一小组的频率为,则该组的人数为()A.150人 B.300人 C.600人 D.900人5.若x没有平方根,则x的取值范围为()A.x为负数 B.x为0 C.x为正数 D.不能确定6.如图,在六边形中,若,与的平分线交于点,则等于()A. B. C. D.7.如图,是矩形对角线的中点,是的中点,若,则的长为()A.3 B.4 C.5 D.68.如果三角形的一个内角等于其它两个内角的差,那么这个三角形是()A.锐角三角形 B.钝角三角形C.直角三角形 D.斜三角形9.下列二次根式中,可以与合并的是(

).A.

B.

C.

D.10.若分式有意义,则满足的条件是()A.或-2 B. C. D.二、填空题(每小题3分,共24分)11.若式子有意义,则x的取值范围是.12.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为_____.13.如图,,平分,过作交于于点,若点在射线上,且满足,则的度数为_________.14.已知一次函数,若y随x的增大而减小,则的取值范围是___.15.在平面直角坐标系中,若点A的坐标为(8,4),则点A到y轴的距离为_____.16.如图,已知函数y=ax+b和的图象交于点P,根据图象,可得关于x的二元一次方程组的解是_______.17.如图,在中,,按以下步骤作图:分别以点和点为圆心,大于一半长为半径作画弧,两弧相交于点和点,过点作直线交于点,连接,若,,则的周长为_____________________.18.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于三、解答题(共66分)19.(10分)如图,在中,以为圆心,为半径画弧,交于,分别以、为圆心,大于的长为半径画弧,交于点,作射线交于点E,若,,求的长为.20.(6分)某工地的一间仓库的主视图和左视图如图(单位:米),屋顶由两个完全相同的长方形组成,计算屋顶的总面积.(参考值:,,,)21.(6分)雾霾天气持续笼罩我国大部分地区,困扰着广大市民的生活,口罩市场出现热销,小明的爸爸用12000元购进甲、乙两种型号的口罩在自家商店销售,销售完后共获利2700元,进价和售价如表:(1)小明爸爸的商店购进甲、乙两种型号口罩各多少袋?(2)该商店第二次以原价购进甲、乙两种型号口罩,购进甲种型号口罩袋数不变,而购进乙种型号口罩袋数是第一次的2倍,甲种口罩按原售价出售,而效果更好的乙种口罩打折让利销售,若两种型号的口罩全部售完,要使第二次销售活动获利不少于2460元,每袋乙种型号的口罩最多打几折?22.(8分)已知x、y是实数,且x=++1,求9x﹣2y的值.23.(8分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D在边AB上,点E在边AC的左侧,连接AE.(1)求证:AE=BD;(2)试探究线段AD、BD与CD之间的数量关系;(3)过点C作CF⊥DE交AB于点F,若BD:AF=1:2,CD=,求线段AB的长.24.(8分)为响应国家的号召,减少污染,某厂家生产出一种节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶.这种油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,费用为118元;若完全用电做动力行驶,费用为36元,已知汽车行驶中每千米用油的费用比用电的费用多1.6元.(1)求汽车行驶中每千米用电的费用和甲、乙两地之间的距离.(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过61元,则至少需要用电行驶多少千米?25.(10分)观察下列等式:①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…根据等式所反映的规律,解答下列问题:(1)直接写出:第⑤个等式为;(2)猜想:第n个等式为(用含n的代数式表示),并证明.26.(10分)如图,在中,,点在内,,,点在外,,.(1)求的度数.(2)判断的形状并加以证明.(3)连接,若,,求的长.

参考答案一、选择题(每小题3分,共30分)1、B【解析】利用等边三角形的性质得出C点位置,进而求出OC的长.【详解】解:如图所示:过点C作CE⊥AB于点E,连接OE,∵△ABC是等边三角形,∴CE=AC×sin60°=,AE=BE,∵∠AOB=90°,∴EOAB,∴EC-OE≥OC,∴当点C,O,E在一条直线上,此时OC最短,故OC的最小值为:OC=CE﹣EO=3故选B.【点睛】本题主要考查了勾股定理以及等边三角形的性质,得出当点C,O,E在一条直线上,此时OC最短是解题关键.2、C【解析】试题分析:要使有意义,则x-3≠0,即x≠3,故答案选C.考点:分式有意义的条件.3、D【分析】根据同底数幂乘法、单项式除以单项式、积的乘方、幂的乘方进行计算,然后分别进行判断,即可得到答案.【详解】解:A、,正确;B、,正确;C、,正确;D、,故D错误;故选:D.【点睛】本题考查了同底数幂乘法、单项式除以单项式、积的乘方、幂的乘方,解题的关键是熟练掌握所学的运算法则进行解题.4、B【解析】根据频率=频数÷总数,得频数=总数×频率.【详解】解:根据题意,得

该组的人数为1200×0.25=300(人).

故选:B.【点睛】本题考查了频率的计算公式,理解公式.频率=能够灵活运用是关键.5、A【分析】根据平方根的定义即可求出答案,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.【详解】解:∵负数没有平方根,∴若x没有平方根,则x的取值范围为负数.故选:A.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根.6、D【分析】先根据六边形的内角和,求出∠DEF与∠AFE的度数和,进而求出∠GEF与∠GFE的度数和,然后在△GEF中,根据三角形的内角和定理,求出∠G的度数,即可.【详解】∵六边形ABCDEF的内角和=(6−2)×180°=720°,

又∵∠A+∠B+∠C+∠D=520°,

∴∠DEF+∠AFE=720°−520°=200°,

∵GE平分∠DEF,GF平分∠AFE,

∴∠GEF+∠GFE=(∠DEF+∠AFE)=×200°=100°,

∴∠G=180°−100°=80°.

故选:D.【点睛】本题主要考查多边形的内角和公式,三角形内角和定理以及角平分线的定义,掌握多边形的内角和公式,是解题的关键.7、A【分析】首先由O是矩形ABCD对角线AC的中点,可求得AC的长,然后由勾股定理求得AB的长,即CD的长,又由M是AD的中点,可得OM是△ACD的中位线,继而求得答案.【详解】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=BD=2OB=10,∴CD=AB=,∵M是AD的中点,∴OM=CD=1.故选:A.【点睛】此题考查了矩形的性质、勾股定理以及三角形中位线的性质,利用勾股定理求得AB的长是解题关键.8、C【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【详解】解:设三角形的三个角分别为:α、β、γ,则由题意得:,解得:α=90°

故这个三角形是直角三角形.

故选:C.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.9、C【解析】分别将每一项化为最简二次根式,如果与是同类二次根式,即可合并.【详解】解:A、,不能与合并,故A不符合题意;B、不能与合并,故B不符合题意;C、,能与合并,故C符合题意;D、,不能与合并,故D不符合题意;故答案为:C.【点睛】本题考查同类二次根式,解题的关键是熟练运用同类二次根式的概念.10、B【分析】根据分式有意义的条件:分母不能为0进行计算即可.【详解】∵分式有意义,∴a-1≠0,∴a≠1.故选:B.【点睛】考查了分式有意义的条件,解题关键是熟记:当分母不为0时,分式有意义.二、填空题(每小题3分,共24分)11、且【详解】∵式子在实数范围内有意义,∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案为x≥-1且x≠0.12、1;【解析】分析:根据辅助线做法得出CF⊥AB,然后根据含有30°角的直角三角形得出AB和BF的长度,从而得出AF的长度.详解:∵根据作图法则可得:CF⊥AB,∵∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,∵∠CFB=90°,∠B=10°,∴BF=BC=2,∴AF=AB-BF=8-2=1.点睛:本题主要考查的是含有30°角的直角三角形的性质,属于基础题型.解题的关键就是根据作图法则得出直角三角形.13、或【分析】如图所示符合题目条件的有F,F′两种情况,当在点F位置时,可证的△BFD≌△BED,根据,即可得出∠BED=∠DFB=130°,当在点F′时,FD=DF′,根据第一种情况即可求解.【详解】解:如图所示当在点F位置时∵平分,由图形的对称性可知△BFD≌△BED∴∠BED=∠DFB∵,∴∴∠BED=∠DFB=130°当在点F′时由①知,FD=DF′,∠DFA=∠FF′D=50°综上所述:的度数为或故答案为:或.【点睛】本题主要考查的是等腰三角形的判定及其性质定理的应用问题,灵活运用有关定理来分析、判定、推理和解答是解题的关键.14、k<1.【分析】一次函数y=kx+b,当k<0时,y随x的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y随x的增大而减小,

∴k-1<0,

解得k<1,

故答案是:k<1.【点睛】本题主要考查了一次函数的增减性.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.15、1【分析】根据点到y轴的距离等于横坐标的绝对值可以得解.【详解】解:∵点A的坐标为(1,4),∴点A到y轴的距离为1.故答案为:1.【点睛】本题考查了点的坐标与点到坐标轴的距离的关系,理解掌握这种关系是解答关键.16、【分析】根据题意利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】解:根据函数图可知,y=ax+b和的图象交于点P,P的纵坐标为-2,代入,求出P的坐标为(-4,-2),所以方程组的解为.故答案为.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.17、1【分析】利用基本作图可以判定MN垂直平分BC,则DC=DB,然后利用等线段代换得到的周长=AB+AC,再把,代入计算即可.【详解】解:由作法得MN垂直平分BC,则DC=DB,故答案为:1.【点睛】本题考查了基本作图和线段垂直平分线的性质,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是本题的关键.18、6【解析】试题分析:由全等可知:AH=DE,AE=AH+HE,由直角三角形可得:,代入可得.考点:全等三角形的对应边相等,直角三角形的勾股定理,正方形的边长相等三、解答题(共66分)19、1.【分析】连接FE,由题中的作图方法可知AE为∠BAF的角平分线,结合平行四边形的性质可证明四边形ABEF为菱形,根据菱形对角线互相垂直平分即可求得AE的长.【详解】解:如下图,AE与BF相交于H,连接EF,由题中作图方法可知AE为∠BAD的角平分线,AF=AB,∵四边形为平行四边形,∴AD//BC,∴∠1=∠2,又∵AE为∠BAD的角平分线,∴∠1=∠3,∴∠2=∠3,∴AB=BE,∵AF=AB,∴AF=BE,∵AD//BC∴四边形ABEF为平行四边形∴为菱形,∴AE⊥BF,在Rt△ABH中,根据勾股定理,∴AE=1.【点睛】本题考查平行四边形的性质定理,菱形的性质和判定,角平分线的有关计算,勾股定理.能判定四边形ABEF为菱形,并通过菱形的对角线互相垂直平分构建直角三角形利用勾股定理求解是解决此题的关键.20、41.08【分析】如图所示,求出DC=2.5,BC=3,由左视图可得AC=1,根据勾股定理求得AB=,由左视图得长方形屋顶长为6.5,根据长方形面积计算公式求得一面屋顶的面积,然后再乘以2即可得解.【详解】如图所示,易知四边形GEDC和BFEG均为矩形,∴BG=EF=0.5,GC=DE=,∴BC=BG+GC=0.5+2.5=3,由左视图可知AC=1,在Rt△ABC中,∴由左视图可知屋顶长为6.5,所以,屋顶顶面的面积为:==41.08.【点睛】此题主要考查了运用勾股定理解决实际问题,同时考查了几何体的三视图.21、(1)购进甲型号口罩300袋,购进乙种型号口罩200袋;(2)每袋乙种型号的口罩最多打9折【解析】(1)设小明爸爸的商店购进甲种型号口罩x袋,乙种型号口罩y袋,根据“小明的爸爸用12000元购进甲、乙两种型号的口罩,销售完后共获利2700元”列出方程组,解方程组即可求解;(2)设每袋乙种型号的口罩打m折,根据“两种型号的口罩全部售完,要使第二次销售活动获利不少于2460元”列出不等式,解不等式即可求解.【详解】(1)设小明爸爸的商店购进甲种型号口罩x袋,乙种型号口罩y袋,根据题意可得,,解得:,答:该商店购进甲种型号口罩300袋,乙种型号口罩200袋;(2)设每袋乙种型号的口罩打m折,由题意可得,300×5+400(0.1m×36-30)≥2460,解得:m≥9,答:每袋乙种型号的口罩最多打9折.【点睛】本题考查了二元一次方程组的应用及一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系,列出方程组或不等式求解.22、-1.【解析】根据被开方数大于等于0列式求出x的值,再求出y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,y﹣5≥0,5﹣y≥0∴y=5x=1∴9x﹣2y=9×1﹣2×5=﹣1∴9x﹣2y的值为﹣1【点睛】本题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.23、(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+1.【分析】(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE≌△BCD,∴∠CAE=∠CBD,又∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=∠CAE=15°,∴∠EAD=90°,在Rt△ADE中,AE2+AD2=ED2,且AE=BD,∴BD2+AD2=ED2,∵ED=CD,∴BD2+AD2=2CD2,(3)解:连接EF,设BD=x,∵BD:AF=1:2,则AF=2x,∵△ECD都是等腰直角三角形,CF⊥DE,∴DF=EF,由(1)、(2)可得,在Rt△FAE中,EF===3x,∵AE2+AD2=2CD2,∴,解得x=1,∴AB=2+1.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.24、(1)汽车行驶中每千米用电的费用是元,甲、乙两地之间的距离是121千米;(2)至少需要用电行驶81千米.【分析】(1)设汽车行驶中每千米用电的费用是元,则每千米用油的费用为元,根据题意,列出分式方程,并解方程即可;(2)先求出汽车行驶中每千米用油的费用,设汽车用电行驶,然后根据题意,列出一元一次不等式,即可求出结论.【详解】解:(1)设汽车行驶中每千米用电的费用是元,则每千米用油的费用为元,列方程得,解得,经检验是原方程的解,则甲、乙两地之间的距离是千米.答:汽车行驶中每千米用电的费用是元,甲、乙两地之间的距离是千米.(2)汽车行驶中每千米用油的费用为元.设汽车用电行驶,可得,解得,答:至少需要用电行驶81千米.【点睛】此题考查的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.25、(1)36﹣35=2×35;(2)3n+1﹣3n=2×3n.【分析】由①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…得出第⑤个等式,以及第n个等式的底数不变,指数依次分别是n+1、n、n.【详解】解:(1)由①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…得出第⑤个等式36﹣35=2×35;故答案为36﹣35=2×35

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论