2025届福建省厦门市同安区五校数学八年级第一学期期末教学质量检测试题含解析_第1页
2025届福建省厦门市同安区五校数学八年级第一学期期末教学质量检测试题含解析_第2页
2025届福建省厦门市同安区五校数学八年级第一学期期末教学质量检测试题含解析_第3页
2025届福建省厦门市同安区五校数学八年级第一学期期末教学质量检测试题含解析_第4页
2025届福建省厦门市同安区五校数学八年级第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福建省厦门市同安区五校数学八年级第一学期期末教学质量检测试题质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.实数a、b在数轴上对应点的位置如图所示,化简|a|-的结果是()A.-2a+b B.2a-bC.-b D.-2a-b2.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是()A. B.C. D.3.用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其全等的依据是()A.SAS B.ASA C.AAS D.SSS4.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A. B. C. D.5.甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种10千克、乙种9千克、丙种3千克混在一起出售,为确保不亏本,售价至少应定为每千克()A.6元 B.6.5元 C.6.7元 D.7元6.在下列图形中是轴对称图形的是()A. B.C. D.7.点A(-2,5)关于x轴对称的点的坐标是()A.(2,5) B.(-2,-5) C.(2,-5) D.(5,-2)8.平移前后两个图形是全等图形,对应点连线()A.平行但不相等 B.不平行也不相等C.平行且相等 D.不相等9.如图,已知数轴上点表示的数为,点表示的数为1,过点作直线垂直于,在上取点,使,以点为圆心,以为半径作弧,弧与数轴的交点所表示的数为()A. B. C. D.10.如图,,,,则的长度为()A. B. C. D.11.将两块完全相同的长方体木块先按图1的方式放置,再按图2的方式放置,测得的数据如图(单位:)所示.则桌子的高度图1图2A. B. C. D.12.解分式方程,可得分式方程的解为()A. B. C. D.无解二、填空题(每题4分,共24分)13.已知点A(x,4)到原点的距离为5,则点A的坐标为______.14.李华同学在解分式方程去分母时,方程右边的没有乘以任何整式,若此时求得方程的解为,则的值为___________.15.如图,在等边中,D、E分别是边AB、AC上的点,且,则______16.把命题“直角三角形的两个锐角互余”改写成“如果……那么……”的形式:__________________.17.要使代数式有意义,则x的取值范围是_______.18.函数y中自变量x的取值范围是___________.三、解答题(共78分)19.(8分)计算:(1);(2)20.(8分)甲、乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做90个零件所用的时间和乙做60个零件所用时间相等,求甲、乙每小时各做多少个零件?21.(8分)解分式方程:1+=22.(10分)铜陵市“雨污分流”工程建设期间,某工程队承包了一段总长2400米的地下排水管道铺设任务,按原计划铺设800米后,为尽快完成任务,后来每天的工作效率比原计划提高了25%,结果共用13天完成任务.(1)求原计划平均每天铺设管道多少米?(2)若原来每天支付工人工资为2000元,提高工作效率后每天支付给工人的工资增长了30%,则完成整个工程后共支付工人工资多少元?23.(10分)化简:.24.(10分)计算:(1)(2)25.(12分)“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;

D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.26.(阅读·领会)材料一:一般地,形如的式子叫做二次根式,其中a叫做被开方数.其中,被开方数相同的二次根式叫做同类二次根式.像同类项一样,同类二次根式也可以合并,合并方法类似合并同类项,是把几个同类二次根式前的系数相加,作为结果的系数,即利用这个式子可以化简一些含根式的代数式.材料二:二次根式可以进行乘法运算,公式是我们可以利用以下方法证明这个公式:一般地,当时,根据积的乘方运算法则,可得,∵,∴.于是、都是ab的算术平方根,∴利用这个式子,可以进行一些二次根式的乘法运算.将其反过来,得它可以用来化简一些二次根式.材料三:一般地,化简二次根式就是使二次根式:(I)被开方数中不含能开得尽方的因数或因式;(II)被开方数中不含分母;(III)分母中不含有根号.这样化简完后的二次根式叫做最简二次根式.(积累·运用)(1)仿照材料二中证明二次根式乘法公式那样,试推导二次根式的除法公式.(2)化简:______.(3)当时,化简并求当时它的值.

参考答案一、选择题(每题4分,共48分)1、C【分析】先由已知图判定a、0和b之间的大小关系,进而判定(a-b)的正负,再利用绝对值与二次根式性质化简原式即可得解.【详解】解:由图可知b>0>a∴a-b<0,a<0故原式可化为-a-(b-a)=-a-b+a=-b故选:C.【点睛】本题主要考察数轴与绝对值、二次根式性质综合,易错点在于能否正确确定各项符号.2、C【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.3、D【解析】试题分析:本题考查的关键是作角的过程,作角过程中所产生的条件就是证明全等的条件.根据用直尺和圆规画一个角等于已知角的过程很容易看出所得两个三角形三边对应相等.解:设已知角为∠O,以顶点O为圆心,任意长为半径画弧,交角的两边分别为A,B两点;画一条射线b,端点为M;以M为圆心,OA长为半径画弧,交射线b于C点;以C为圆心,AB长为半径画弧,两弧交于点D;作射线MD.则∠COD就是所求的角.由以上过程不难看出两个三角形中有三条边对应相等,∴证明全等的方法是SSS.故选D.考点:全等三角形的判定.4、A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:=,故选A.5、C【分析】求出甲乙丙三种糖果的加权平均数,即可求解.【详解】,答:为确保不亏本,售价至少应定为每千克6.7元.故选C.【点睛】本题主要考查加权平均数,掌握加权平均数的公式,是解题的关键.6、B【分析】根据轴对称图形的概念求解.【详解】A.不是轴对称图形,故本选项不符合题意,B.是轴对称图形,故本选项符合题意,C.不是轴对称图形,故本选项不符合题意,D.是不轴对称图形,故本选项不符合题意.故选B.【点睛】本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、B【解析】分析:关于x轴对称的两点的横坐标相等,纵坐标互为相反数.详解:根据题意可得:点A(-2,5)关于x轴对称的点的坐标为(-2,-5),故选B.点睛:本题主要考查的是关于x轴对称的点的性质,属于基础题型.关于x轴对称的两个点横坐标相等,纵坐标互为相反数;关于y轴对称的两个点纵坐标相等,横坐标互为相反数;关于原点对称的两个点横坐标和纵坐标都互为相反数.8、C【分析】根据平移的性质即可得出答案.【详解】解:平移前后两个图形是全等图形,对应点连线平行且相等.故选:C.【点睛】本题利用了平移的基本性质:①图形平移前后的形状和大小没有变化,只是位置发生变化;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.9、B【分析】由数轴上点表示的数为,点表示的数为1,得PA=2,根据勾股定理得,进而即可得到答案.【详解】∵数轴上点表示的数为,点表示的数为1,∴PA=2,又∵l⊥PA,,∴,∵PB=PC=,∴数轴上点所表示的数为:.故选B.【点睛】本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.10、B【分析】由△ABC≌△EBD,可得AB=BE=4cm,BC=BD=7cm,根据EC=BC﹣BE计算即可.【详解】解:∵△ABC≌△EBD,∴AB=BE=4cm,BC=BD=7cm,∴EC=BC﹣BE=7﹣4=3(cm),故选:B.【点睛】本题考查全等三角形的性质,线段的和差定义等知识,解题的关键是熟练掌握基本知识.11、C【分析】设小长方形的长为x,宽为y,根据题意可列出方程组,即可求解h.【详解】设小长方形的长为x,宽为y,由图可得解得h=40cm,故选C.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据图形列出方程组进行求解.12、D【分析】先将分式去分母化成整式再求解,注意验证求解到的根是不是增根.【详解】解:去分母可得:整理可得:解得:经检验:是分式方程的增根,故原分式方程无解;故选:D.【点睛】本题主要考查解分式方程,需要注意的是最后的检验,将求解到的值代入最简公分母不为0,才是原分式方程的解.二、填空题(每题4分,共24分)13、(1,4)或(-1,4)【分析】根据两点间的距离公式便可直接解答.【详解】解:∵点A(x,4)到原点的距离是5,点到x轴的距离是4,∴5=,解得x=1或x=-1.A的坐标为(1,4)或(-1,4).故答案填:(1,4)或(-1,4).【点睛】本题考查了勾股定理以及点的坐标的几何意义,解题的关键是明确横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是到x轴的距离.14、−2或−1【分析】先按李华同学的方法去分母,再将x=3代入方程,即可求得m的值.注意因为x−2=−(2−x),所以本题要分两种情况进行讨论.【详解】解答:解:按李华同学的方法,分两种情况:①方程两边同乘(x−2),得2x−3+m=1,把x=3代入得6−3+m=1,解得m=−2;②方程两边同乘(2−x),得−2x+3−m=1,把x=3代入得−6+3−m=1,解得m=−1.故答案为:−2或−1.【点睛】本题考查了解分式方程的思想与解一元一次方程的能力,既是基础知识又是重点.由于方程中两个分母互为相反数,所以去分母时,需分情况讨论,这是本题的关键.15、1【分析】根据等边三角形的性质,得出各角相等各边相等,已知AD=CE,利用SAS判定△ADC≌△CEB,从而得出∠ACD=∠CBE,所以∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=60°,进而利用四边形内角和解答即可.【详解】解:是等边三角形,≌.,,,故答案为1.【点睛】此题考查了等边三角形的性质及全等三角形的判定方法,常用的判定方法有SSS,SAS,AAS,HL等.16、如果一个三角形是直角三角形,那么它的两个锐角互余.【分析】首先找出原命题中的条件及结论,然后写成“如果…,那么…”的形式即可.【详解】解:故答案为:如果一个三角形是直角三角形,那么它的两个锐角互余.【点睛】此题主要考查学生对命题的理解及运用能力.17、x≥-1且x≠1【分析】先根据二次根式有意义,分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∵使代数式有意义,∴解得x≥-1且x≠1.故答案为:x≥-1且x≠1.【点睛】本题考查的是代数式有意义的条件,熟知二次根式中的被开方数是非负数,分母不为零是解答此题的关键.18、【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于1.【详解】解:根据题意得:x-2≠1,解得:x≠2.故答案为:x≠2.【点睛】本题考查了分式有意义的条件,解题的关键是掌握当函数表达式是分式时,考虑分式的分母不能为1.三、解答题(共78分)19、(1);(2)【分析】(1)根据0指数幂,绝对值,二次根式的性质,二次根式的运算法则求解即可;(2)根据平方差公式及完全平方公式求解.【详解】(1)原式(2)原式【点睛】本题考查的是二次根式的运算,掌握二次根式的性质及运算法则、乘法公式是关键.20、甲每小时做18个,乙每小时做12个零件.【分析】本题的等量关系为:甲每小时做的零件数量﹣乙每小时做的零件数量=6;甲做90个所用的时间=乙做60个所用的时间.由此可得出方程组求解.【详解】解:设甲每小时做x个零件,乙每小时做y个零件.由题意得:解得:,经检验x=18,y=12是原方程组的解.答:甲每小时做18个,乙每小时做12个零件.考点:二元一次方程组的应用;分式方程的应用.21、x=-【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:,解得:,经检验是分式方程的解.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22、(1)原计划平均每天铺设管道160米;(2)完成整个工程后共支付工人工资30800元.【分析】(1)设原计划平均每天铺设管道x米,根据共用13天完成任务列出方程求解即可;(2)根据总工资=铺设前800米的工资+铺设剩余部分的工资,列出式子进行计算即可.【详解】解:(1)设原计划平均每天铺设管道米,由题意得,解得:,经检验,是原分式方程的解,且符合题意;即原计划平均每天铺设管道160米.(2)(元).答:完成整个工程后共支付工人工资30800元.【点睛】本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.23、【解析】根据完全平方公式及单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.进行求解即可.【详解】原式.【点睛】本题考查了完全平方公式及单项式乘多项式,解答本题的关键在于熟练掌握完全平方公式及单项式与多项式相乘的运算法则.24、(1);(2).【分析】(1)直接利用整式的乘除法法则计算即可;(2)据整式的除法运算顺序和法则计算可得.【详解】解:(1)原式=3a²b·(-3b)=-9

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论