版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省黄石市十校联考数学八上期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列图形中的曲线不表示y是x的函数的是()A. B. C. D.2.下列长度的三条线段,哪一组能构成三角形()A. B. C. D.3.运用乘法公式计算,下列结果正确的是()A. B. C. D.4.下列计算正确的是()A.3x﹣2x=1 B.a﹣(b﹣c+d)=a+b+c﹣dC.(﹣a2)2=﹣a4 D.﹣x•x2•x4=﹣x75.已知是二元一次方程的一个解,那么的值为()A.2 B.-2 C.4 D.-46.如图,一棵大树在离地面6米高的处断裂,树顶落在离树底部的8米处,则大树断裂之前的高度为()A.10米 B.16米 C.15米 D.14米7.如图是由6个完全相同的小正方体组成的立体图形,它的左视图是()A. B. C. D.8.下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±49.如图所示,下列图形不是轴对称图形的是()A. B. C. D.10.如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍 B.缩小3倍 C.缩小6倍 D.不变11.在一张长为10cm,宽为8cm的矩形纸片上,要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形边上),这个等腰三角形有几种剪法()A.1 B.2 C.3 D.412.如图,先将正方形纸片对折,折痕为MN,再把点B折叠在折痕MN上,折痕为AE,点E在CB上,点B在MN上的对应点为H,连接DH,则下列选项错误的是()A.△ADH是等边三角形 B.NE=BCC.∠BAE=15° D.∠MAH+∠NEH=90°二、填空题(每题4分,共24分)13.关于x、y的方程组与有相同的解,则a+b的值为____.14.求值:____.15.如图所示,在Rt△ABC中,∠C=90°,∠A=15°,将△ABC翻折,是顶点A与顶点B重合,折痕为MH,已知AH=2,则BC等于_____.16.分解因式:3x2-6x+3=__.17.计算的结果是_____________.18.若函数y=kx+3的图象经过点(3,6),则k=_____.三、解答题(共78分)19.(8分)如图,直线与y轴的交点为A,直线与直线的交点M的坐标为.(1)求a和k的值;(2)直接写出关于x的不等式的解集;(3)若点B在x轴上,,直接写出点B的坐标.20.(8分)如图,直线的解析表达式为:y=-3x+3,且与x轴交于点D,直线经过点A,B,直线,交于点C.(1)求点D的坐标;(2)求直线的解析表达式;(3)求△ADC的面积;(4)在直线上存在一点P,使得△ADP的面积是△ADC面积的2倍,请直接写出点P的坐标.21.(8分)(1)化简:(2)设S=,a为非零常数,对于每一个有意义的x值,都有一个S的值对应,可得下表:x…﹣3﹣2﹣113567…S…22…仔细观察上表,能直接得出方程的解为.22.(10分)如图,在△ABC中,D、E为BC上的点,AD平分∠BAE,CA=CD.(1)求证:∠CAE=∠B;(2)若∠B=50°,∠C=3∠DAB,求∠C的大小.23.(10分)画图(1)请你把先向右平移3格得到,再把绕点顺时针旋转得到.(2)在数轴上画出表示的点.24.(10分)我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个关的正方形(如图1),这个矩形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式.称为勾股定理.(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图2),也能验证这个结论,请你帮助小明完成验证的过程;(2)如图3所示,,请你添加适当的辅助线证明结论.25.(12分)先化简,再求代数式的值,其中.26.(1)问题原型:如图①,在锐角中,于点,在上取点,使,连结.求证:.(2)问题拓展:如图②,在问题原型的条件下,为的中点,连结并延长至点,使,连结.判断线段与的数量关系,并说明理由.
参考答案一、选择题(每题4分,共48分)1、C【分析】函数是指:对于任何一个自变量x的值都有唯一确定的函数值y与之相对应.【详解】根据函数的图象,选项C的图象中,x取一个值,有两个y与之对应,故不是函数.故选C【点睛】考点:函数的定义2、B【解析】由题意直接根据三角形的三边关系进行分析判断即可.【详解】解:根据三角形任意两边的和大于第三边,得A、2+2=4<5,不能组成三角形;B、3+4=7>5,能组成三角形;C、2+6=8<10,不能组成三角形;D、4+5=9,不能组成三角形.故选:B.【点睛】本题考查能够组成三角形三边的条件,用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.3、B【分析】利用添括号法则将y-3看成一个整体,然后利用平方差公式和完全平方公式计算即可.【详解】解:====故选B.【点睛】此题考查的是平方差公式和完全平方公式的应用,掌握平方差公式和完全平方公式是解决此题的关键.4、D【分析】直接利用积的乘方运算法则以及去括号法则分别化简得出答案.【详解】解:A、3x﹣2x=x,故此选项错误;B、a﹣(b﹣c+d)=a﹣b+c﹣d,故此选项错误;C、(﹣a2)2=a4,故此选项错误;D、﹣x•x2•x4=﹣x7,故此选项正确.故选:D.【点睛】本题考查了积的乘方运算法则以及去括号法则,正确掌握相关运算法则是解题关键.5、A【分析】把x与y的值代入方程计算即可求出a的值.【详解】将代入方程得2a+2=6解得a=2故选:A【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6、B【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】由题意得BC=6,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:B.【点睛】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.7、D【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【详解】左视图有2层3列,第一层有3个正方形,第二层有一个正方形;每列上正方形的分布从左到右分别是2,1,1个.故选D.【点睛】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.8、B【分析】根据平方根和算术平方根的知识点进行解答得到答案.【详解】A.,错误;B.(﹣)2=2,正确;C.,错误;D.,错误;故选B.【点睛】本题主要考查二次根式的性质与化简,仔细检查是关键.9、A【分析】由题意根据轴对称图形的概念进行分析判断即可.【详解】解:A.不是轴对称图形,故此选项符合题意;B.是轴对称图形,故此选项不合题意;C.是轴对称图形,故此选项不合题意;D.是轴对称图形,故此选项不合题意.故选:A.【点睛】本题考查轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.10、A【分析】把原分式中的x换成3x,把y换成3y进行计算,再与原分式比较即可.【详解】解:把原分式中的x换成3x,把y换成3y,那么==3×.故选:A.【点睛】考核知识点:分式性质.运用性质变形是关键.11、B【解析】有两种情况:①当∠A为顶角时,如图1,此时AE=AF=5cm.②当∠A为底角时,如图2,此时AE=EF=5cm.故选B.12、B【分析】依据折叠的性质以及正方形的性质,得到△ADH是等边三角形;依据AM=AD=AH,得到∠AHM=30°,进而得出∠BAE=15°;依据∠AHE=∠B=90°,∠AMH=∠ENH=90°,即可得到∠MAH+∠NEH=90°.【详解】由折叠可得,MN垂直平分AD,AB=AH,∴DH=AH=AB=AD,∴△ADH是等边三角形,故A选项正确;∵BE=HE>NE,∴BE>BN,∴NE=BC不成立,故B选项错误;由折叠可得,AM=AD=AH,∴∠AHM=30°,∠HAM=60°,又∵∠BAD=90°,∴∠BAH=30°,由折叠可得,∠BAE=∠BAH=15°,故C选项正确;由折叠可得,∠AHE=∠B=90°,又∵∠AMH=90°,∴∠AHM+∠HAM=90°,∠AHM+∠EHN=90°,∴∠HAM=∠EHN,同理可得∠NEH+∠AHM,∴∠MAH+∠NEH=90°,故D选项正确;故选:B.【点睛】本题主要考查的是翻折的性质、线段垂直平分线的性质、等边三角形的性质和判定、等腰三角形的性质,证得三角形ADH是一个等边三角形是解题的关键.二、填空题(每题4分,共24分)13、5【分析】联立不含a与b的方程,组成方程组,求出x与y的值,进而确定出a与b的值,代入原式计算即可求出值.【详解】联立得:,①×3+②得:11x=11,解得:x=1,把x=1代入①得:y=﹣2,∴方程组的解为,把代入得:,即,④×2﹣③得:9b=27,解得:b=3,把b=3代入④得:a=2,∴a+b=3+2=5,故答案为:5【点睛】本题主要考查二元一次方程组的解的定义以及二元一次方程组的解法,掌握加减消元法解方程组,是解题的关键.14、.【分析】由二次根式的性质,即可得|3|,继而求得答案.【详解】解:∵3,∴3<0,∴|3|=3.故答案为:3.【点睛】此题考查了二次根式的化简与性质以及绝对值的性质.注意:.15、1.【分析】根据折叠的性质得到HB=HA,根据三角形的外角的性质得到∠CHB=30°,根据直角三角形的性质计算即可.【详解】由折叠的性质可知,HB=HA=2,∴∠HAB=∠HBA=15°,∴∠CHB=30°,∵∠C=90°,∴BC=BH=1,故答案为:1.【点睛】本题考查的是翻转变换的性质,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.16、3(x-1)2【解析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】.故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17、【分析】根据积的乘方的逆运算,把原式变形为指数相同的,然后利用有理数的乘方和乘法法则进行计算即可.【详解】原式,故答案为:.【点睛】本题考查了积的乘方公式,逆用公式是解题的关键,注意负数的奇次方是负数.18、1【解析】∵函数y=kx+3的图象经过点(3,6),∴,解得:k=1.故答案为:1.三、解答题(共78分)19、(1),;(2);(3)【分析】(1)把M(3,a)代入求得,把M(3,3)代入y=kx,即可求得k的值;(2)由M(3,3)根据图象即可求得;(3)先求出AM的长度,作MN⊥x轴于N,根据勾股定理求出BN的长度即可得答案.【详解】解:∵直线与直线的交点为,在直线上,也在直线上,将的坐标代入,得,解得.∴点M的坐标为,将的坐标代入,得,解得.(2)因为:所以利用图像得的解集是.(3)作MN⊥轴于N,∵直线与轴的交点为A,∴A(0,),∵M(3,3),∴,∵MN=3,MB=MA,∴,所以:∴.(如图3).【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理的应用,数形结合是解题的关键.20、(1)D(1,0);(2);(3);(4)P1(8,6)或P2(0,-6).【分析】(1)已知l1的解析式,令y=0求出x的值即可;(2)设l2的解析式为y=kx+b,由图联立方程组求出k,b的值;(3)联立方程组,求出交点C的坐标,继而可求出S△ADC;(4)△ADP与△ADC底边都是AD,根据△ADP的面积是△ADC面积的2倍,可得点P的坐标..【详解】解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,∴x=1,∴D(1,0);(2)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,y=-,代入表达式y=kx+b,∴,∴,∴直线l2的解析表达式为;(3)由,解得,∴C(2,﹣3),∵AD=3,∴S△ADC=×3×|﹣3|=;(4)∵△ADP与△ADC底边都是AD,△ADP的面积是△ADC面积的2倍,
∴△ADC高就是点C到直线AD的距离的2倍,
即C纵坐标的绝对值=6,则P到AD距离=6,
∴点P纵坐标是±6,
∵y=1.5x-6,y=6,
∴1.5x-6=6,
解得x=8,
∴P1(8,6).
∵y=1.5x-6,y=-6,
∴1.5x-6=-6,
解得x=0,
∴P2(0,-6)
综上所述,P1(8,6)或P2(0,-6).【点睛】本题考查的是一次函数的性质,三角形面积的计算等有关知识,难度中等.21、(1);(2)x=7或x=﹣1【分析】(1)根据分式的混合运算顺序和运算法则化简即可得;(2)先从表格中选取利于计算的x、S的值代入,求出a的值,从而还原分式方程,解之可得.【详解】解:原式;将、代入,得:,则分式方程为,,则或,解得或,经检验或均为分式方程的解,故答案为:或.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及解分式方程的步骤与注意事项.22、(1)证明见解析(2)48°【解析】(1)根据等腰三角形的性质得到∠CAD=∠CDA,根据角平分线的定义得到∠EAD=∠BAD,于是得到结论;(2)设∠DAB=x,得到∠C=3x,根据角平分线的定义得到∠EAB=2∠DAB=2x,求得∠CAB=∠CAE+∠EAB=50°+2x,根据三角形的内角和即可得到结论.【详解】(1)∵CA=CD,∴∠CAD=∠CDA,∵AD平分∠BAE,∴∠EAD=∠BAD,∵∠B=∠CDA﹣∠BAD,∠CAE=∠CAD﹣∠DAE,∴∠CAE=∠B;(2)设∠DAB=x,∵∠C=∠3∠DAB,∴∠C=3x,∵∠CAE=∠B,∠B=50°,∴∠CAE=50°,∵AD平分∠BAE,∴∠EAB=2∠DAB=2x,∴∠CAB=∠CAE+∠EAB=50°+2x,∵∠CAB+∠B+∠C=180°,∴50°+2x+50°+3x=180°,∴x=16°,∴∠C=3×16°=48°.【点睛】本题考查了等腰三角形的性质,角平分线的定义,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.23、(1)图见解析;(2)图见解析.【分析】(1)先根据平移的性质画出,再根据旋转的性质画出点,然后顺次连接点即可得;(2)先将表示3的点记为点A,将表示2的点记为点B,将原点记为点O,再过点A作数轴的垂线,然后以点A为圆心、AB长为半径画弧,交AC于点D,最后连接OD,以点O为圆心、OD长为半径画弧,在原点右侧交数轴于点P即可得.【详解】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 老年人租房合同注意事项
- 新型水性油漆施工方案研究
- 可穿戴健康技术行业相关项目经营管理报告
- 循环泵市场需求与消费特点分析
- 常州工学院教育培训创新方案
- 老龄化社会的智能化养老解决方案
- 印制的彩票产业运行及前景预测报告
- 老年人健康管理知识分享方案
- 家用抛光设备和机器非电动市场需求与消费特点分析
- 工业缝纫机产业深度调研及未来发展现状趋势
- 江苏省常州市金坛区2023-2024学年九年级上学期期中英语试卷
- 湖北省武汉市2022-2023学年八年级上学期语文期中试卷(含答案)
- 1000字作文稿纸模板(完美修正版)
- 中学学生操行等级评定表
- 钢结构施工安全技术交底
- 新时代女大学生修养智慧树知到课后章节答案2023年下枣庄学院
- 项目复盘工作报告PPT模板
- 食谱编制-食谱编制案例分析(食品营养与配餐课件)
- 患者安全目标与核心护理制度课件
- 句子成分及句子基本结构(共32张PPT)
- 幼儿教育学基础(第二版)中职PPT完整全套教学课件
评论
0/150
提交评论