复杂网络中的自组织现象_第1页
复杂网络中的自组织现象_第2页
复杂网络中的自组织现象_第3页
复杂网络中的自组织现象_第4页
复杂网络中的自组织现象_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

18/23复杂网络中的自组织现象第一部分复杂网络自组织的定义和特点 2第二部分非线性动力学与自组织现象的关系 3第三部分复杂网络中集群形成的机理 6第四部分规模定律与幂律分布 8第五部分自相似与分形结构 11第六部分同步与相变 13第七部分复杂网络中的弹性和自适应性 15第八部分自组织现象在网络科学中的应用 18

第一部分复杂网络自组织的定义和特点关键词关键要点【复杂网络自组织的定义】

1.复杂网络自组织是指网络结构和动力学在没有外部指导的情况下自发形成和演化的过程。

2.自组织的网络系统通过内部规则和相互作用来塑造自己的结构和功能,展现出从混乱到有序的演变。

3.自组织机制驱使网络系统适应环境的变化,展现出鲁棒性和适应性。

【复杂网络自组织的特点】

复杂网络自组织的定义

复杂网络自组织是指复杂网络系统中,组成元素或子系统在没有预先安排或外部控制的情况下,通过自发交互作用和反馈机制,形成有序、功能性或协作的行为模式的过程。换言之,自组织是由网络系统自身的内部动力和相互作用驱动的,而不是由外部干预或强制施加的。

复杂网络自组织的特点

复杂网络自组织具有以下特征:

1.自发性:自组织过程由网络系统自身的内部相互作用触发,没有外部控制或设计。

2.非平衡态:复杂网络通常处于非平衡态,即其状态不断变化和适应。自组织过程是系统在非平衡态下维持动态稳定性的机制。

3.自相似性:自组织网络往往表现出自相似性,即在不同尺度上具有类似的结构和行为模式。

4.动态度:自组织网络不是静态的,它们会随着时间的推移不断进化和适应。

5.鲁棒性:自组织网络通常具有较高的鲁棒性,能够承受一定程度的扰动,并保持其功能完整性。

6.临界性:自组织的发生需要一定的参数或条件,这些条件称为临界值。

7.分形结构:自组织网络通常表现出分形结构,即网络中存在着类似的图案或结构,无论是在局部还是全局尺度上。

8.涌现性:自组织过程会导致涌现性现象,即从底层元素或子系统的相互作用中产生出系统层面的新属性或行为。

9.适应性:自组织网络能够适应不断变化的环境,并通过调整其结构和行为模式来维持其功能。

10.可塑性:自组织网络具有可塑性,即它们可以响应环境输入而改变其结构和功能。

值得注意的是,这些特征并非总是以同样程度存在于所有复杂网络中。自组织的具体表现形式取决于网络的特定性质、相互作用机制以及环境条件。第二部分非线性动力学与自组织现象的关系非线性动力学与自组织现象的关系

非线性动力学是探索复杂系统中非线性、非均衡和非可逆行为的科学领域。自组织现象是指在没有外部干预的情况下,系统从无序向有序的自发转变。非线性动力学为理解自组织现象提供了重要的理论基础和分析工具。

非线性系统和混沌行为

非线性系统是指其动力学行为由非线性方程描述的系统。非线性方程的特点是其输出与输入不成正比,且存在多重解。非线性系统可以表现出各种复杂行为,包括混沌。

混沌是一种看似随机但实际上具有确定性结构的无序行为。它表现为对初始条件的极度敏感性,即系统的微小扰动会导致其轨迹发生巨大的变化。混沌系统通常具有分形结构和奇异吸引子。

自组织现象与非线性动力学

自组织现象通常发生在非线性系统中。非线性系统在特定条件下能够自发地从无序向有序转变,产生具有时间和空间结构的复杂模式。这种自组织行为与以下非线性动力学机制密切相关:

*正反馈和负反馈:正反馈放大输入信号,而负反馈抑制输入信号。在非线性系统中,正负反馈的相互作用可以产生非线性反馈环,驱动系统的自组织。

*分岔和突变:当非线性系统的参数发生变化时,系统可能会经历分岔,即突然从一种动力学模式转变为另一种模式。这些分岔可以引发自组织现象的产生。

*协同效应:非线性系统中,局部相互作用可以产生整体影响,称为协同效应。这可以导致自组织模式的形成,例如群体行为和同步现象。

*吸引子和奇异吸引子:吸引子是系统动力学最终收敛到的稳定状态。奇异吸引子是混沌系统中非周期性、高维度的吸引子。它们为自组织模式提供了拓扑框架。

应用和示例

非线性动力学与自组织现象在广泛的学科领域中有着重要的应用,包括:

*物理学:湍流、相变、混沌激光

*生物学:细胞周期、群体行为、神经元网络

*经济学:市场波动、泡沫和崩溃

*社会学:群体动态、流行趋势、社会网络

实例:

*湍流:湍流是一种非线性流体动力学现象,表现为高度无序和混沌的流动模式。它由非线性纳维-斯托克斯方程描述,这些方程捕获了流体中的非线性反馈和涡旋动力学。

*贝尔纳convection:贝尔纳convection是一种流体动力学现象,其中加热从下方加热的流体会产生有序的convection模式。这些模式是由热驱动的不稳定性与流体中非线性自组织相互作用的结果。

*群体行为:群居动物,如鸟类和鱼类,表现出令人惊叹的群体行为模式。这些模式是由个体之间的非线性相互作用产生的,导致自发的同步运动和协调的群体行为。

结论

非线性动力学为理解自组织现象提供了重要的理论基础。它的概念和工具有助于解释复杂系统中从无序向有序的复杂转变。在广泛的学科领域中,非线性动力学与自组织现象有着广泛的应用,为探索和理解自然和社会系统中的复杂行为提供了宝贵的见解。第三部分复杂网络中集群形成的机理关键词关键要点【节点聚集】

1.相似性原则:具有相似特征的节点趋向于连接,形成紧密联系的局部区域。

2.异质性增长:聚集体中,中心节点拥有更多连接,成为聚集体的核心,而边缘节点随着时间而减少。

3.尺度不变性:聚集体的分布在不同尺度上表现出相似性,遵循幂律分布或分形结构。

【社区形成】

复杂网络中集群形成的机理

复杂网络中集群的形成是一个动态演化过程,受到网络结构、节点属性和交互规则等多种因素的影响。其形成机理主要包括:

1.相似性原则

相似性原则是集群形成最基本的法则。在复杂网络中,具有相似特征的节点往往更容易相互连接,形成局部紧密联系的团块。相似性可以表现在节点的属性、功能、位置或其他特征方面。

2.优先连接原则

优先连接原则是指具有更多连接的节点更容易获得新的连接。这种现象在复杂网络中普遍存在,导致网络结构中出现富者愈富的效应。具有较高连接度的节点更容易吸引其他节点的连接,并形成局部高密度区域。

3.地理邻近性

地理邻近性是空间网络中集群形成的重要因素。在物理空间中,节点之间的距离会影响它们的连接概率。距离较近的节点更容易相互连接,形成基于空间距离的集群。

4.社区结构

社区结构是指复杂网络中存在的一组紧密联系的节点集合,它们与网络中的其他节点相对疏远。社区结构的形成通常基于节点之间的相似性或功能相似性。节点在社区内的连接密度较高,而跨社区的连接密度较低,形成明显的集群结构。

5.模块化结构

模块化结构是一种特殊的社区结构,其中网络中的节点分为若干个离散的模块。模块内部的连接密度很高,而不同模块之间的连接密度很低。模块化的结构有利于集群的形成,每个模块可以看作一个相对独立的集群。

6.层次结构

层次结构是指复杂网络中存在着多个层次的组织结构。每个层次中包含多个子层次,子层次之间通过聚合并连接。层次结构的形成可以促进集群的形成,每个层次可以形成一个独立的集群。

7.多尺度结构

多尺度结构是指复杂网络中同时存在多个尺度的结构特征。不同尺度的集群通常具有不同的属性和演化规律。大尺度的集群往往由多个小尺度的集群组成,形成层级化的集群结构。

8.动力学因素

复杂网络是一个动态演化的系统,其集群结构也会随着时间不断变化。网络中的节点可以添加、删除或重新连接,这会影响网络的拓扑结构和集群分布。动态过程中的竞争、合作、反馈等机制也会影响集群的形成和演化。

通过这些机理的共同作用,复杂网络中的节点可以自发组织形成集群,并演化出各种各样的结构和功能。集群的形成不仅影响着网络的整体拓扑结构,也对网络的动力学行为和信息传播产生重要影响。第四部分规模定律与幂律分布关键词关键要点规模定律

1.规模不变性:复杂网络通常表现出规模不变性,即网络的统计特性随着网络规模的增加保持不变。

2.幂律分布:复杂网络的度分布通常服从幂律分布,即节点的度数分布遵循P(k)∼k^-γ,其中P(k)表示度数为k的节点所占比例,γ为幂律指数。

3.无标度网络:具有幂律分布度分布的网络被称为无标度网络,它们不具备特征尺度,不存在典型的节点度数。

幂律分布

1.幂律指数:幂律指数γ描述了幂律分布的尾部衰减速率,较小的γ值对应于较重的尾部,表示网络中存在更多高度连接的节点。

2.幂律分布的意义:幂律分布在复杂网络中普遍存在,它反映了网络中节点连接的不均匀性,高连接节点起着至关重要的作用。

3.应用:幂律分布在社会网络、生物网络和技术网络等领域有着广泛应用,用于揭示网络的结构特性和识别关键节点。规模定律与幂律分布

简介

规模定律是一种统计规律,它描述了复杂网络中节点和连接数之间的关系。根据规模定律,节点的连接数与网络的规模(即节点总数)呈幂律分布。

幂律分布

幂律分布是一种概率分布,其中变量的概率与变量大小呈幂次方关系。数学上,幂律分布可以表示为:

```

P(x)=cx^-α

```

其中:

*P(x)是变量x的概率

*c是归一化常数

*α是幂律指数(>0)

复杂网络中的规模定律

在许多复杂网络中,节点的连接数遵循幂律分布。这表明,网络中存在一系列具有大量连接数的“中心节点”,而绝大多数节点的连接数相对较少。

幂律指数

幂律分布的幂律指数α反映了网络中连接数分布的“重尾性”。α值越小,重尾性越强,表示网络中存在更多具有大量连接数的中心节点。

幂律分布的意义

幂律分布对于理解复杂网络的结构和动力学具有重要意义。它表明,网络中节点的连接数高度不均匀,并且存在少量中心节点。这些中心节点对网络的整体行为和稳定性起着关键作用。

应用

规模定律和幂律分布在各个领域都有广泛的应用,包括:

*社会网络:识别社交网络中具有影响力的个人

*生物网络:揭示生物系统中基因和蛋白质的相互作用

*技术网络:分析互联网和通信网络的结构

*经济网络:理解财富和收入分布的动力学

示例

以下是一些复杂网络中规模定律存在的示例:

*互联网:网站之间链接的分布遵循幂律分布,其中少数几个网站具有大量链接(中心节点),而大多数网站的链接较少。

*社交网络:Twitter和Facebook等社交网络中,用户之间的关注者关系遵循幂律分布,其中少数几个用户拥有大量关注者。

*细胞网络:生物细胞中代谢反应的分布遵循幂律分布,其中少数几个反应非常频繁,而大多数反应非常罕见。

结论

规模定律和幂律分布为理解复杂网络的结构和动力学提供了宝贵的见解。通过识别网络中中心节点的存在和连接数的不均匀分布,这些规律揭示了网络的鲁棒性和脆弱性。第五部分自相似与分形结构关键词关键要点自相似性

1.自相似性是指一个系统在不同的尺度上表现出相同的统计性质。在复杂网络中,自相似性体现在节点连接、度分布和拓扑结构等方面。

2.自相似结构具有无限尺度不变性,即无论放大或缩小,其外观和特征都保持相似。这种性质使得复杂网络具有鲁棒性和适应性,因为它可以适应不同尺度的变化。

3.自相似网络的度分布通常遵循幂律分布,这表明网络中存在大量连接度低的节点和少量连接度高的节点。这种分布导致网络具有无标度性质,并可能影响其传播和同步动力学。

分形结构

1.分形结构是具有非整数维度的几何形状。它们具有自相似性,在任何尺度上都会表现出相似的图案和细节。

2.复杂网络中分形结构的存在表明网络拓扑结构的复杂性和异质性。节点和连接可以形成分形簇,这些簇可以具有不同的密度和连接性。

3.分形网络的动力学特性可能与规则拓扑网络不同。例如,分形网络中的随机游走过程可能会表现出异常扩散现象,并影响网络中信息和资源的传播效率。自相似与分形结构

自相似性和分形结构是复杂网络中常见的现象,指网络中存在着重复的模式,这些模式在不同的尺度上表现出相似的特征。

自相似性

自相似性指网络中存在着小尺度上的模式与大尺度上的模式相似的现象。例如,在互联网中,小尺度的局部网络与大尺度的全球网络具有相似的拓扑结构,如幂律分布的度分布和无标度特征。

分形结构

分形结构指网络中存在着具有自相似特征的几何形状。这些形状通常具有分数维度,即介于整数维度之间的值。例如,小世界网络是一种分形结构,其维度介于一维和二维之间。

自相似与分形结构的特征

*无标度性:自相似和分形网络的度分布往往呈现幂律分布,这意味着网络中存在着大量连接度较小的节点和少数连接度极大的节点。

*重尾分布:自相似和分形网络中不同节点的连接度分布往往呈现重尾分布,即少数节点连接度极高,而大部分节点连接度较低。

*模块化:自相似和分形网络通常由多个模块组成,这些模块具有不同的拓扑结构和功能。

*层次性:自相似和分形网络通常具有层次结构,即网络中存在着多个层级,不同层级之间的节点连接度不同。

自相似与分形结构的起源

自相似和分形结构的起源可以归因于多种机制,包括:

*生长与演化:自相似和分形网络可以通过增长和演化过程形成,例如,互联网通过不断添加新节点和连接来演化。

*竞争与合作:自相似和分形网络中的节点可以相互竞争资源,也可以合作形成更大的结构。

*突现性:自相似和分形结构可以从网络中的局部交互中突现,而不受预先设计的限制。

自相似与分形结构的应用

自相似与分形结构在理解和分析复杂网络中发挥着重要作用。这些特性可以帮助我们:

*预测网络行为:自相似性和分形结构可以用来预测网络的鲁棒性、容错性和可扩展性。

*设计网络拓扑:自相似性和分形结构可以用来设计更有效的网络拓扑,例如,用于数据传输、社交网络和基础设施。

*理解生物和社会系统:自相似性和分形结构在生物和社会系统中也很常见,它们可以帮助我们理解这些系统的复杂性和演化。

结论

自相似性和分形结构是复杂网络中的重要特征,它们反映了网络中模式的重复性和几何形状的多样性。理解这些特征对于揭示复杂网络的行为和设计有效的网络至关重要。第六部分同步与相变同步与相振

在复杂网络中,同步是指系统中多个振荡器以相同频率和相位振荡的现象。相变是指系统在关键控制参数处从一种状态转变到另一种状态的现象。在复杂网络中,同步与相变密切相关,并且受到网络拓扑、耦合强度和节点异质性等因素的影响。

网络同步

在复杂网络中,同步表现为一种集体行为,其中节点的振荡频率和相位趋于一致。同步的发生取决于网络拓扑结构和耦合强度。研究表明,具有高聚类系数和小平均路径长度的网络更有可能表现出同步行为。耦合强度也起着重要的作用,当耦合强度足够强时,系统更容易实现同步。

网络同步可以分类为:

*全局同步:所有节点都以相同的频率和相位振荡。

*局部同步:网络中形成多个同步簇,每个簇内的节点以相同的频率和相位振荡,但不同簇之间的频率和相位可能不同。

*奇异同步:节点的频率和相位以非整齐的方式振荡,表现出混沌或准混沌行为。

网络中的相变

复杂网络中的相变通常以序参量为特征,该序参量量化了系统中同步的程度。常见的序参量包括:

*同步序参量:衡量节点频率或相位对齐的程度。

*聚类系数:衡量网络中局部同步簇的形成程度。

当控制参数(如耦合强度或节点异质性)变化时,系统可能会经历一系列相变,例如:

*从不同步到局部同步:随着耦合强度增加,网络从不同步状态转变为局部同步状态。

*从局部同步到全局同步:随着耦合强度进一步增加,局部同步簇合并,形成全局同步状态。

*从同步到不同步:当耦合强度减小或节点异质性增加时,系统可能从同步状态转变为不同步状态。

影响同步与相变的因素

网络同步和相变的发生受以下因素的影响:

*网络拓扑:高聚类系数和小平均路径长度的网络更有可能同步。

*耦合强度:强耦合强度促进同步,而弱耦合强度抑制同步。

*节点异质性:异质性较高的网络通常表现出较差的同步能力。

*时延:时延可以降低同步的可能性。

*外部噪声:噪声可以破坏同步。

应用

同步与相变在复杂网络中具有广泛的应用,包括:

*生物系统中的神经同步

*社会网络中的意见形成

*电力网络中的频率同步

*通信网络中的时钟同步

了解复杂网络中同步与相变的原理对于理解和控制这些系统的集体行为至关重要。通过优化网络拓扑、耦合强度和节点异质性,可以实现或抑制同步,从而实现所需的功能。第七部分复杂网络中的弹性和自适应性关键词关键要点弹性

1.容错能力:复杂网络可以通过分散冗余和模块化等机制,对故障和攻击展现出较高的容忍度,确保系统整体功能的保持。

2.适应性:复杂网络具有动态调整其结构和功能的能力,以应对不断变化的环境条件,保持网络的稳定性和效率。

3.恢复能力:网络能够在遭受破坏或攻击后自我修复或重建,恢复其原有功能或结构,增强其抵御风险的能力。

自适应性

1.学习能力:复杂网络能够从与环境的交互中获取信息并更新其结构或功能,从而适应新的情况和挑战。

2.自我组织:网络的组件可以自主组织成新的模式或结构,以优化系统的整体性能并应对环境变化。

3.协同演化:网络中的不同组件或群体之间可以通过相互作用协同进化,从而产生新的功能或特性,增强网络的适应性和鲁棒性。复杂网络中的弹性和自适应性

复杂网络通常表现出惊人的弹性,能够在受到扰动时迅速恢复其功能或结构。这种弹性源于网络中内置的自适应机制,使网络能够动态地调整其行为和连接方式。

自适应网络模型

复杂网络中的自适应性可以通过各种模型来描述,其中包括:

*自组织临界网络:这些网络具有自我维持的临界态,表现出对扰动的鲁棒性和故障恢复能力。

*适应性网络:这些网络能够根据环境的变化或内部需求调整其拓扑结构和连接强度。

*弹性网络:这些网络能够快速从扰动中恢复,并保持其基本功能和结构。

弹性和自适应机制

复杂的网络通常采用以下机制来实现弹性和自适应性:

*冗余:网络中存在多余的路径和连接,确保当某些部分故障时,信息和资源仍能流动。

*模块化:网络被组织成模块化的子网络,允许独立适应不同的环境要求。

*学习和优化:网络能够学习其环境并优化其连接和行为,以提高效率和鲁棒性。

*去中心化:网络没有单一的中心节点,使网络对故障更加鲁棒。

*动态重布线:网络能够在受到扰动时动态地重新布线其连接,以维持连通性和功能。

弹性和自适应性的影响

复杂网络中的弹性和自适应性对以下方面产生了重大影响:

*鲁棒性:网络能够承受扰动和故障,而不会失去其基本功能。

*可扩展性:网络能够随着时间推移适应不断变化的环境,而不会丧失其效率。

*进化:网络能够通过自然选择或进化压力逐渐进化和优化其结构和行为。

*复杂性:弹性和自适应性本身增加了网络的复杂性,使其更难分析和理解。

案例研究:互联网

互联网是一个复杂网络的典型示例,它展示了令人惊叹的弹性和自适应性。尽管受到各种攻击、故障和自然灾害,互联网仍然保持高度连通和可用。这是由于其冗余、去中心化和弹性路由机制等固有特性。

结论

复杂网络中的弹性和自适应性是关键特性,使网络能够在不断变化和充满挑战的环境中生存和发展。通过了解这些机制,我们可以构建更鲁棒、更可扩展和更能适应未来的网络系统。第八部分自组织现象在网络科学中的应用关键词关键要点网络韧性与脆弱性

1.自组织现象有助于识别和缓解网络中关键节点和连边的脆弱性,提高系统对扰动的抵抗力。

2.通过动态自组织行为,网络可以不断调整其结构和功能,增强其适应性和鲁棒性,降低系统故障的风险。

3.了解自组织现象在网络韧性中的作用,对于设计具有弹性和可靠性的网络至关重要,尤其是在基础设施、通信和金融等关键领域。

信息传播与社交影响

1.自组织现象可以解释信息在网络中的传播模式和社交影响的演化,包括级联失效、病毒传播和舆论形成。

2.通过分析网络中的自组织行为,可以预测信息传播的轨迹,识别高影响力节点,并开发有效的干预策略来控制信息流。

3.理解信息传播和社交影响的自组织现象对于传染病控制、舆论引导和市场营销等应用具有重要意义。

社区发现与群组形成

1.自组织现象驱动着网络中的社区形成和群组演化,影响着网络的结构和功能。

2.通过研究自组织行为,可以识别网络中的社区结构,了解群组的形成和解散机制,并揭示不同群组之间的交互关系。

3.社区发现和群组形成的自组织现象在社会网络分析、市场细分和推荐系统等领域具有应用潜力。

同步与异步行为

1.自组织现象可以解释网络中节点同步和异步行为的复杂演化,包括网络同步化、时钟同步和共振现象。

2.通过分析自组织行为,可以预测和控制网络中的同步行为,这对于通信系统、神经网络和生物系统等领域至关重要。

3.了解同步与异步行为的自组织现象有助于揭示复杂系统的协调和混乱机制。

自适应网络

1.自组织现象在自适应网络中发挥着至关重要的作用,使网络能够根据外部环境和内部需求动态调整其结构和功能。

2.自适应网络可以优化资源分配、提高网络性能,并适应不断变化的条件,从而增强系统的效率和鲁棒性。

3.自适应网络的自组织现象在动态环境下网络控制、资源管理和网络安全等领域具有广泛的应用前景。

复杂网络的建模与仿真

1.自组织现象为复杂网络建模和仿真提供了理论基础,使得研究人员能够模拟和预测网络的涌现行为和演化。

2.通过发展自组织模型,可以深入理解网络的动态行为,并探索不同因素对网络结构和功能的影响。

3.复杂网络建模和仿真有助于预测网络未来的发展轨迹,并为网络设计和控制提供指导。自组织现象在网络科学中的应用

自组织现象在网络科学中具有广泛的应用,为理解和解决复杂网络中的各种问题提供了宝贵的工具。以下是一些关键的应用程序:

1.社交网络分析:

*社区检测:自组织算法可用于识别网络中的社区或群体,这些群体由密切相连的节点组成。这有助于了解社交网络中不同群体的互动模式。

*用户行为建模:自组织模型可用于模拟社交网络用户的行为,了解他们的连接模式、信息传播方式以及意见形成过程。

2.疾病传播建模:

*流行病预测:自组织模型可以用来预测疾病通过网络传播的模式,例如流行病或感染的传播。这有助于卫生当局实施及时的预防措施。

*免疫策略优化:自组织模型可用于优化免疫策略,例如疫苗接种或隔离措施,以减缓疾病传播。

3.复杂系统建模:

*金融网络分析:自组织模型可用于分析金融网络,例如股票市场或银行系统,以了解价格波动、投资模式和系统性风险。

*交通网络优化:自组织模型可用于优化交通网络,例如道路系统或公共交通网络,以提高效率、减少拥堵和改善整体移动性。

4.网络安全:

*恶意行为检测:自组织算法可用于检测网络中的恶意行为,例如网络攻击或入侵。它们可以识别可疑活动模式并触发警报。

*网络弹性增强:自组织模型可用于增强网络弹性,使网络能够抵御攻击并从中断中快速恢复。

5.其他应用:

*能源系统优化:自组织模型可用于优化能源系统,例如电网或智能电表网络,以提高效率、减少能源浪费和改善可再生能源集成。

*生态系统建模:自组织模型可用于模拟生态系统,例如捕食-猎物关系或食物网,以了解物种间的动态互动和生态系统的稳定性。

具体应用示例:

*社交网络中的社区检测:Louvain方法是一种流行的自组织算法,用于检测社交网络中的社区。它基于模块化优化原则,将网络划分为具有高度内部连接和低外部连接的模块。

*疾病传播建模:SIR模型是一种经典的自组织模型,用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论