版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
September2024
McKinseyTechnology
Adataleader’s
operatingguidetoscalinggenAI
DeployinggenerativeAIintheenterpriserequiresadata-centricroadmap.Leaderscanuseawell-definedoperatingmodelto
successfullyscalethetechnology.
ThisarticleisacollaborativeeffortbyAlexSingla,AsinTavakoli,HolgerHarreis,Kayvaun
Rowshankish,andKlemensHjartar,withGaspardFouillandandOlivierFournier,representingviewsfromMcKinseyTechnologyandQuantumBlack,AIbyMcKinsey.
Afteralmosttwoyearsofinfatuationwith
generativeAI(genAI),companiesare
movingpast
thehoneymoonphase
1toembracetheworkthatmattersmost:creatingvaluefromthistantalizing
technology.Expectationsarehigh.Arecent
McKinseyGlobalSurvey
foundthat65percent
ofcompaniesacrosssizes,geographies,and
industriesnowusegenAIregularly,twiceasmanyaslastyear.2InvestmentingenAIcontinuestoriseamidthebeliefthatearlygainsseenbyhigh
performersareaharbingerofcostdecreasesandprofitstocome.ButmostcompanieshavenotyetseensignificantimpactfromgenAI.
Tokeepupwiththecompetitivepaceofinnovation,dataexecutivesatmostorganizationshavedraftedgenAIstrategies.Notallcompanieshavemoved
pastthepilotstage,butmosthavemadestepsto
integrateAIintotheirtechstacksatsomelevel.Yeta
technicalintegrationmodel
isonlypartofwhatisnecessarytogeneratelastingvaluefromgenAI.
CompaniesmustalsocreategenAIoperating
modelstoensuretheirtechnologyimplementationsdelivermeasurablebusinessresults.
Anoperatingmodelisafamiliarstructurein
mostlargeorganizations.Acompany’soperatingmodelisaplanthatoutlineshowpeople,
processes,andtechnologywillbedeployedto
providevaluetocustomersandstakeholders.
Itcanencompassfinancialstructures,partnerships,andproductroadmapstomeetthecompany’s
long-termgoals.WhenappliedspecificallytogenAI,anoperatingmodelincludeseverydecision—fromstaffingandorganizationalstructuresto
technologydevelopmentandcompliance—
thatguideshowgenAIisusedandmeasuredthroughoutacompany.
Awell-definedgenAIoperatingmodelcanhelp
leaderssuccessfullyandsecurelyscalegenAI
acrosstheirorganizations.DataisthebackboneofasuccessfulgenAIdeployment,sochiefdata
officers(CDOs)oftenleadthechargetocreate
thesemodels—bringingtechnology,people,and
processestogethertotransformgenAI’spotentialintorealimpact.YetwhencreatinggenAIoperatingmodels,dataleaderscommonlyfallintotwotraps:
—Techfortech:ThisapproachinvolvesallocatingsignificantresourcestowardgenAIwithouta
clearbusinesspurpose,leadingtosolutions
disconnectedfromreal-worldimpact.ThiscanresultinoverspendingongenAItoolsthatarerarelyusedindailyworkflowsandcreatelittlebusinessvalue.
—Trialanderror:Thisapproachentails
experimentingwithdisparategenAIprojects,butnotdoingsoinacoordinatedmanner.
Thispresentsaparticularriskinsectors
suchastechnology,retail,andbanking,wheregenAIhasthepotentialtoquicklyincrease
productivity.Companiesinindustrieswhere
genAImaytakelongertohaveasignificant
effectonproductivity,suchasagricultureandmanufacturing,couldpotentiallyaffordtowaittodeploythetechnology.
ManybusinessleadersfeelasenseofurgencytodeploygenAI.ThiscreatesanopportunityfordataexecutivestogetapprovalforgenAI
operatingmodelsthatputdataatthecenteroftheorganization.
WhenCDOsandtheirexecutivesupportersare
readytodefineagenAIoperatingmodel,whatare
thefirststepstogetstarted?Andwhatmeasuresshouldcompaniestaketoensuretheseoperatingmodelsmeetrisk,governance,security,and
compliancemeasures?Wepresentapractical
guidedataleaderscanusetocreateagenAI
operatingmodel,includinghowtostructuretalent
teams,organizedataassets,anddeterminewhetheracentralizedordomain-centric
developmentisthebestapproach.
1“
MovingpastgenAI’shoneymoonphase:SevenhardtruthsforCIOstogetfrompilottoscale
,”McKinsey,May13,2024.2“
ThestateofAIinearly2024:GenAIadoptionspikesandstartstogeneratevalue
,”McKinsey,May30,2024.
Adataleader’soperatingguidetoscalinggenAI2
AboutMcKinseyTechnology
McKinseyTechnologyworkswith
organizationsacrosstheprivate,public,
andsocialsectorstocreateopportunitiesaroundcloud,datatransformation,tech
strategy,riskandremediation,andartificialintelligence.McKinseyTechnology
comprisesmorethan2,500peoplein
everygeography—developers,engineers,architects,strategists,andanalysts—
whobringtogethertechnicalexpertiseanddeepindustryknowledge.Weworkcloselywithorganizationstodeliverthe
technologytransformationtheyneedtodayandbuildthecapabilitiesto
embracewhatcomesnext.
DesignagenAIoperatingmodelaroundcomponents
GenAIinnovationismovingatanexceedinglyfastpace,soitmakessensetodesignanoperating
modelthatleveragescomponents.Withthis
approach,acompanycreatesaplanforaddingnewgenAIcomponentstotheenterprisearchitectureatregularintervals,andinwaysthatarealignedwith
businessgoals.Theoperatingmodelenables
changestogenAIcomponentswithouthavingtooverhaulthetechstack.
Ononehand,addinggenAIfunctionalitytomatureelementsthatrequirefewerregularupdates,suchascloudhostinganddatachunking,warrantsa
higherlevelofinvestmentandimplementationcomplexity.Ontheotherhand,fast-moving
elementswithshorterlifecycles,suchasagents
andlargelanguagemodel(LLM)hosting,shouldbequicktoimplementandeasytochange.
Inthisarea,organizationscanbeflexible,first
implementingtheminimumnecessarycomponentsforcriticalgenAIusecases,andthenaddingandremovingcomponentsasneedsevolve.For
instance,aleadingEuropeanbankimplemented
14keygenAIcomponentsacrossitsenterprise
architecture.Thisapproachallowedthebank
toimplement80percentofitscoregenAIuse
casesinjustthreemonths(Exhibit1).Byidentifying
thegenAIcomponentswiththelargestpotentialimpactearlyon,thebankfocuseditsdeveloper
resourcestoproducegenAIfeaturesaligned
withclearmid-tolong-termgoals.However,
whileacomponent-basedapproachtogenAI
deploymentisacrucialsuccessfactorforscalinggenAI,only31percentofgenAIhigh-performersand11percentofothercompanieshaveadoptedthismodel.3
Tosucceedwithacomponent-basedgenAI
developmentmodel,companiescancreateataskforcetoreview,update,andevolvetheroadmap.Thetaskforcealsoassignsexecutionplans,
ensuringIT,data,AI,andbusinessteamshaveappropriateresponsibilitiesforspecificrollouts.
Thisrequiresclearcommunicationbetweena
varietyofstakeholders,includingAIengineers,
softwaredevelopers,datascientists,product
managers,andenterprisearchitects,aswellas
regularreportingtobusinessleads.Coordinationisessentialtoensurethatcomponentrolloutsare
systematizedandalignedwithorganizationalgoalsinsteadofpresentedinaseriesofdisjointedpilots.
3“
ThestateofAIinearly2024:GenAIadoptionspikesandstartstogeneratevalue
,”McKinsey,May30,2024.
Adataleader’soperatingguidetoscalinggenAI3
Exhibit1
ldentifyingcorereusablecomponentscanallowanorganizationtorolloutgenerativeAltoolsquickly·
componentsforgenerativeAltools,illustrativeoEssentialcomponent
DatasourcesAPI1
FilE
web
○Relationaldatabasemanagementsystem
oDocumentdatabase
DatarepositoriesRawdata
oobjectstoragecurateddata
oGraphdatabaseOVectordatabase
○onlinetransactionalprocessing
ocolumnarstorage
DataservicesGenerativeAl
Dataconsumption○API
USErinterface
○chat
OMultimodalinput/output
Hallucinationchecker
validation
Generation
OSourceattribution
opromptlibrary
○LLM2chainand
agentframework
semanticsearchandretrieval
oFunctioncalling
predictiveAl
oInputvalidationoModelparameterconfiguration
processing
●LLMs
ochange
monitoring
oAPIqueriesoP3masking
ochunkingandembedding
Metadatacollection
oMultimodality
oGraphneuralnetwork
oReranking
OCR4andtextExtraction
oEmbedding
oopen-sourcemodels
ETL5
processing
Dataandmodelgovernance
ModelperformancemonitoringOA/BtestingandExperimentationORouting
OModelregistry
oAccuracyevaluation
。"versioning"andreproducibilityoModEl"explainability"
OReusablepipelinesfortrainingandinference
oRequestthrottling
oModeltuningandtraining
ocataloging
OAutomatedbackupandrecovEry
OAccessrequestsoversioning
oExtErnalsharing
controlcentergatewayoFinancialoperations
dentityandaccessmanagementocodemanagement
esecretsmanagement
oInfrastructureoperationsMonitoringandloggingcontainerorchestrationoscheduling
osandboxdevelopmentenvironmentoshared-developmentworkspacesoworkflowmanagement
'Applicationprogramminginterface.2Largelanguagemodel.3personallyidentifiableinformation.4opticalcharacterrecognition.5Extract,transform,load.
Mckinsey&company
Adataleader’soperatingguidetoscalinggenAI4
ChooseanextendedordistinctgenAIteam
WhenbuildingagenAIoperatingmodel,definingacoreteamiscrucial.Therearetwomainoptions:
extendanexistingdataorITteambyequippingthemwithnewgenAIskillsorbuildadistinct
andseparategenAIteam.Thelattercanbe
accomplishedbyselectingpeoplefromanexistingdataorITteamorbyhiringnewtalent.Eachhasitsownadvantagesandconstraints.
Makinganexistingdatateamresponsiblefor
genAImayseemtobetheeasieroption,thoughthependulumcouldshiftasgenAImatures.For
instance,aleadinglogisticsorganizationextendeditsITorganization,whichincludeddatateams,
tolaunchseveralgenAIinitiatives.ThecompanywrappedgenAIintoitsdataandanalyticsroad
map,encouragingexistingteamstoupskillin
genAIcapabilities.WhilethecompanysucceededindeployingagenAIpilot,itwaslimitedinscope.Andfuturerolloutswereslowerthanexpected
becausegenAIproductswereintegratedintothecompany’soveralltechnologyplatform,requiringtimeandresourcestoensurecompliancewith
existingsystems.
DecouplingthegenAIteamfromtheITordataorganizationhasdifferentadvantages.This
approachallowsanorganizationtobuildanewhighlyskilledgenAIteamfromscratch.Witha
solidfoundationindataandAIarchitectures,thenewteamcanquicklyiterateongenAI
componentsoutsideofthelargerITfunction.
SeveralleadingEuropeanbankshavelaunched
suchgenAItaskforces,withtheideatheycould
potentiallyexpandintofull-fledgedcentersof
excellence(CoE).Inhighlyregulatedindustries
suchashealthcareandfinancialservices,creatingnew,centralizedgenAIteamsalsoappearstobethebestpractice.Usingthisapproach,these
companieslaunchedseveralgenAIprojectswithinweeksinsteadofmonths.
Eithermodelcanbesuccessful,butbothhave
pitfallscompaniesshouldbecarefultoavoid.
IfthegenAIteamisdecoupledfromIT,itsroad
mapshouldstillbealignedwiththebroaderIT
organizationtoavoidduplicatingeffortsorbuildingdisconnectedgenAIcomponentsinmultiple
places.Thecapabilitymapandownershipofeachcomponentshouldbeclearlydefinedandsharedacrosstheorganization.Forexample,thegenAItaskforcecouldoverseepromptengineeringandguardrails,LLMoperationsandorchestration,andmodelimprovement—butnotdataingestion,
management,andstorage.
However,ifthegenAIteamexpandsasanoffshootofexistingITanddatafunctions,theteamwillneed
tosuccessfullymanagetwostarklydifferent
technologylifecycles.SpecificgenAIcomponents,suchasLLMhostingandmodelhubs,willneedtobedevelopedandputintoproductionmorerapidlythantraditionalITanddatacomponents,suchas
hostingandcontainers.
Whetheracompanychoosesanextendedor
distinctgenAIteam,itisimportantforacentralITteamtodefineacommonunderlyingtechnologyinfrastructurethattiesallgenAItoolstogether.
Adataleader’soperatingguidetoscalinggenAI5
Avoidingthisstepcouldleadtocomplianceissuesor
technicaldebt
—theextraworkrequiredtofixbuggyproductsthatwereinitiallybuiltforspeedratherthanquality.
Prioritizedatamanagementinstrategicbusinessdomains
Aseverydataleaderknows,effectivedata
managementisapivotalfactorinimplementing
genAI.Withoutafunctionaldataorganization,
genAIapplicationswillnotbeabletoretrieve
andprocesstherightinformationtheyneed.Yetmostenterprisesreportsignificanthurdlesindatautilization,includingissueswithmodelreusability,accessibility,scalability,andquality.Thatiswhy
adatamanagementandgovernancestrategy
shouldbepartofanyoperatingmodelforgenAI.
Governanceincludesmanagingdocumentsourcing,
preparation,curation,andtagging,aswellasensuringdataqualityandcompliance,forbothstructuredandunstructureddata.
Managingvastamountsofunstructureddata,whichcomprisemorethan80percentof
companies’overalldata,mayseemlikeadauntingtask.4Indeed,60percentofgenAIhighperformersand80percentofothercompaniesstruggleto
defineacomprehensivestrategyfororganizing
theirunstructureddata.5Toaddressthischallenge,organizationscanprioritizespecificdomainsand
subdomainsofunstructureddatabasedon
businesspriorities.Forexample,onecompany
mayprioritizeadatadomainthatgroupsallgenAIproductsunderdevelopmentintoonebusiness
unit,whereasanothermayprioritizeadomain
thatgroupsalldatarelatedtoaspecificfunction,suchasfinanceorHR.Theidealdomainsand
subdomainsshouldbesmallenoughtobe
actionablewhilebeingsufficientlylargeenoughtoprovideasignificant,measurableoutcome.
Sincehandlingunstructureddatacanbeunfamiliar
tomanydatateams,theprocessshouldbe
launchedbyexpertsinacentralizedmanner.
Theseexpertsaretypicallydataengineerstrainedtohandleunstructureddata,aswellasnatural-
language-processingengineers,groupedinto
aCoE.Theyestablishandimplementprocesses
formanagingunstructureddatasoitisaccessibletogenAIsystems.Theyensurepoliciesinthe
company’sgenAIoperatingmodelprovideaviewonwhenandwheredataisconsumed.Theyalsoensureconsistentstandardsfordataquality,riskmanagement,andcompliance.
However,oncetheCoEprovidesadeployment
roadmap,domainexpertswithbusinessoversightshouldtakeoverthedatamanagementprocess.Theyarebetterequippedtoextractknowledge
fromspecificrecordsintheirfieldthandata
professionalsalone.Asbusinessunitsbeginto
providemorehigher-qualitydataforawidervarietyofusecases,thecentralizeddatateamstendto
becomeoverwhelmedbythedemandandlacktheexpertisetocheckthequality,veracity,andtaggingofdomain-specificdocuments.
PlanforadecentralizedapproachtogenAIdevelopment
Asdomainteamsbecomemoreadeptatmanagingdata,companiesmaychoosetoprogressively
increasetheseteams’ownershipofgenAI
development—movingfromacentralizedmodeltoafederatedoneandfinallytoadecentralizedone(Exhibit2).Forward-thinkingdataexecutivesmaywanttoensuretheirgenAIoperatingroad
mapsincludefuturescenariosofdecentralizeddevelopment.Therearethreeapproaches
toconsider.
4TamHarbert,“Tappingthepowerofunstructureddata,”MITSloanSchoolofManagement,February1,2021.5“
ThestateofAIinearly2024:GenAIadoptionspikesandstartstogeneratevalue
,”McKinsey,May30,2024.
Adataleader’soperatingguidetoscalinggenAI6
CentralizedgenAI
SomecompanieschoosetocentralizegenAIintotheirowndomains.Thisallowsorganizationsto
buildcapabilitiesquicklyandcontrolcosts.A
leadingglobaltelcousedthismodel,makinggenAIanodetoitsbusinessunits,operatingunderthe
leadershipofachiefdataandAIofficer.The
companywasabletoquicklysetupa
knowledgeablegenAIteambypullingexisting
employeesintoacentralunit.Thisapproachkeptdevelopmentcostslowandreducedtheriskof
multipleteamscreatingsimilarprojects.
Exhibit2
companiescanstartwithcentralizedgenerativeAIdevelopmentandmovetofederatedordecentralizedapproachesasdeploymentsmature.
Domain
Data
sources
Domain-a
Data
sources
Domain-
Data
sources
GenAIteam
processing
Data
repositories
r-Domain
r-Domain
Domain-
Data
sources
GenAIteam
processing
Data
repositories
Data
sources
GenAlteam
Embeddings
Data
repositories
Data
services
GenAdomnain
GenAICentralteam
processing
Datarepositories
Dataservices
GenAICenterofexcellence
Dataservices
ArchetypesofgenerativeAl(genAl)operatingmodels,nonexhaustive
Data
sources
GenAIteam
processing
Data
repositories
Data
services
centralizedFederatedDecentralized
prerequisites
Agilewayofworkingtointegrate·domainteamsinsquads,
coordinatedbyacentralteam
●
sufficientdomainmaturitytodriveprocessinganddata
repositories
Agilewayofworkingto
coordinateamongcentralteamanddomains
veryhighdomainmaturityandsufficientscaletofullydrive
genAlatdomainlevel
sufficientbudgettobuildtechcapabilities
pros
Fasterskillandcapability
buildingthankstoconcentrationoftalent
Highercontrolofcosts
Higherintegrationamongcenterofexcellenceanddomains,
reducingfrictionandgarneringsupportforusecases
Higherbuy-infromdomainandspecializedresourcestodriverelevantdevelopment
AbilitytocreateagentsdirEctlyfortheirneeds
cons
·GenAldomainpotentially
siloedfromkeydecisionmakingbecauseofdistancefrom
otherdomains
potentialslowedexecutionin
centerofexcellence,especiallyforcross-functionusecases
·potentiallackofconsistency,knowledge,andbestpractices
·Highercostandriskofduplicatingefforts
Mckinsey&company
Adataleader’soperatingguidetoscalinggenAI7
FederatedgenAI
AscompaniesbuildgenAIexpertise,theyoften
chooseafederatedmodel,inwhichbusinessunitsarenotonlyresponsibleforconsumingdatarelatedtotheirdomainsbutalsotakeoverdataprocessing
andrepositories.ThismodelallowsdomainstointegrategenAImoredeeplyintotheirdaily
workflowsforstrongerbusinessoutcomes.
AmajorNorthAmericaninvestmentbankchosethefederatedmodeltodevelopnewgenAIusecaseswithinabusinessunit.ThegenAIusecaseswere
sosuccessfulthatthecompanylaterprovided
fundingtoscalesimilargenAItoolsacrossthe
organization.Thislighthouseprojectmodel,in
whichaninnovativeprojectisdevelopedwithinabusinessunitandthenextendedthroughouttheorganization,canbeasuccessfulwaytoboost
genAIdeploymentwithoutprojectduplication.
DecentralizedgenAI
Someinnovativeorganizationspushdecentralizationevenfurther,transferringallgenAIcapabilitiesto
domains.Inthismodel,eachdomaincreatesitsowngenAIteamcomposedofbusiness,data,andtechnicalexpertsalignedonacommon
goaltodeveloprelevantgenAIapplications.
AdecentralizedmodelofgenAIdevelopment
allowsdomainstocreategenAIagentstailored
specificallytotheirneeds,whichtheycanthen
offertootherdomains.Forexample,amarketing
domainthatcreatesagentsforsocialmediacontentcreationandpostmanagementcouldthensee
thoseagentsadoptedbymanyotherdomains,
suchasbusinessdevelopment,sales,andcustomersuccess.Withthisapproach,itisimportantfora
centralizedITteamtoretainvisibilityintothetoolsbeingdevelopedtoavoidblindspotsandensurenotwoteamsdevelopsimilargenAItools.
Unifyfederatedteamsthroughcommoninfrastructure
Whilebusinessunitsknowwhicheveryday
problemstheyneedtosolvewithgenAIandare
thuswellplacedtobuildspecificusecaseswithintheirowndomains,thisdecentralizeddevelopmentprocessshouldnevercompromisethecompany’soverallsecurityorresiliency.Instead,companies
shouldensureITteamsbuildandmanageanunderlyingcommoninfrastructureontopof
whichallgenAItoolsaredevelopedanddeployed.TheITteamshouldalsoberesponsibleforbuildingrepeatableplatformsthatcanbeusedbyall
thebusinessunits,suchasapromptlibrary,a
repositoryforPythoncode,standardagents,and
systemizedcloudstorage.ThistypeofcentralizedITmanagementempowersbusinessunitstocreatenewgenAItools,whileensuringallusecasestheydevelopadheretoahighlysecureandunified
technologyframework.
Emphasizeriskandcompliancegovernance
GenAIcomeswithheightenedrisks,including
potentialhallucinations,misinformation,anddataleaks.ThatiswhyeverygenAIoperatingmodelshouldincludeexplicitstipulationsfor
riskand
compliancegovernance
.Companiescanstartbydelineatingthelevelsofrisktheyarewillingto
toleratewithgenAIandwhichareasofthe
businessrequiremoresafeguards.ThisinitialriskassessmentevaluatesthediversewaysagenAIapplicationcouldaffectthecompany,customers,andpartners.Whenthisriskassessmentis
complete,companiescancreateagovernanceandmonitoringplan,whichshouldalsodefineanynewquantitativeandqualitativeteststhatneedtobeconducted.Bymitigatingrisks,
companiescanmoveforwardwithgenAIrolloutsinsteadoftakingawait-and-seeapproachthat
couldhampercompetitiveness.
Adataleader’soperatingguidetoscalinggenAI8
Findmorecontentlikethisonthe
MckinseyInsightsAPP
scan·Download·personalize
andagilegenAIdeployments.AstrongAI
governanceplanalsohelpscompanieskeeppacewithconstantlyshiftingAIregulations.Forexample,
theEUArtificialIntelligenceActemphasizes
theneedfortransparency,requiringorganizationstonotifyusersaboutAIrisks,ensuremodel
outputquality,andconductregularcomplianceassessments.Legislationinmanycountries
requirescompaniestomeetprivacystandards
thatcanaffecthowgenAItoolsarepermittedto
consumedata.AnygenAIgovernancemodelmustbeflexibleenoughtotakerelevantregulations
andupdatesintoaccount.
Inpracticalterms,creatingagenAIriskplan
involvesasix-stepprocessthatdataleadersmustcontinuallymonitorandupdateasnewpotential
risksa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度旅游服务合同:含服务范围、服务标准、服务费用
- 2024年农业科技示范园区建设合同
- 浙教版五年级上册数学第一单元 小数的意义与加减法 测试卷含完整答案(夺冠系列)
- 木制容器传统工艺创新升级
- 2024年度建筑工程设计、施工及监理合同
- 河南省驻马店市上蔡县2024-2025学年九年级上学期11月期中素质测试物理试卷
- 银冶炼技术创新研究
- 2024年店铺租赁授权合同
- 2024年式升降机短期租赁合同
- 2024年城乡生活垃圾处理服务合同
- 人教版九年级数学上册《第二十六章反比例函数》单元测试卷-附答案
- GB/T 24608-2023滚动轴承及其商品零件检验规则
- 2024年世界的变局
- 儿童缺铁性贫血护理查房课件
- 危重患者护理查房制度
- 护理管理文书质量督查表
- 《财政学》第八章 税收
- 消化科常规用药及注意事项
- 电气基础知识考试题库(完整版)
- 2023年校长竞聘面试答辩题
- 管道穿越高速涵洞施工方案
评论
0/150
提交评论