麦肯锡-数据领导者扩展人工智能的操作指南 A data leaders operating guide to scaling gen AI_第1页
麦肯锡-数据领导者扩展人工智能的操作指南 A data leaders operating guide to scaling gen AI_第2页
麦肯锡-数据领导者扩展人工智能的操作指南 A data leaders operating guide to scaling gen AI_第3页
麦肯锡-数据领导者扩展人工智能的操作指南 A data leaders operating guide to scaling gen AI_第4页
麦肯锡-数据领导者扩展人工智能的操作指南 A data leaders operating guide to scaling gen AI_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

September2024

McKinseyTechnology

Adataleader’s

operatingguidetoscalinggenAI

DeployinggenerativeAIintheenterpriserequiresadata-centricroadmap.Leaderscanuseawell-definedoperatingmodelto

successfullyscalethetechnology.

ThisarticleisacollaborativeeffortbyAlexSingla,AsinTavakoli,HolgerHarreis,Kayvaun

Rowshankish,andKlemensHjartar,withGaspardFouillandandOlivierFournier,representingviewsfromMcKinseyTechnologyandQuantumBlack,AIbyMcKinsey.

Afteralmosttwoyearsofinfatuationwith

generativeAI(genAI),companiesare

movingpast

thehoneymoonphase

1toembracetheworkthatmattersmost:creatingvaluefromthistantalizing

technology.Expectationsarehigh.Arecent

McKinseyGlobalSurvey

foundthat65percent

ofcompaniesacrosssizes,geographies,and

industriesnowusegenAIregularly,twiceasmanyaslastyear.2InvestmentingenAIcontinuestoriseamidthebeliefthatearlygainsseenbyhigh

performersareaharbingerofcostdecreasesandprofitstocome.ButmostcompanieshavenotyetseensignificantimpactfromgenAI.

Tokeepupwiththecompetitivepaceofinnovation,dataexecutivesatmostorganizationshavedraftedgenAIstrategies.Notallcompanieshavemoved

pastthepilotstage,butmosthavemadestepsto

integrateAIintotheirtechstacksatsomelevel.Yeta

technicalintegrationmodel

isonlypartofwhatisnecessarytogeneratelastingvaluefromgenAI.

CompaniesmustalsocreategenAIoperating

modelstoensuretheirtechnologyimplementationsdelivermeasurablebusinessresults.

Anoperatingmodelisafamiliarstructurein

mostlargeorganizations.Acompany’soperatingmodelisaplanthatoutlineshowpeople,

processes,andtechnologywillbedeployedto

providevaluetocustomersandstakeholders.

Itcanencompassfinancialstructures,partnerships,andproductroadmapstomeetthecompany’s

long-termgoals.WhenappliedspecificallytogenAI,anoperatingmodelincludeseverydecision—fromstaffingandorganizationalstructuresto

technologydevelopmentandcompliance—

thatguideshowgenAIisusedandmeasuredthroughoutacompany.

Awell-definedgenAIoperatingmodelcanhelp

leaderssuccessfullyandsecurelyscalegenAI

acrosstheirorganizations.DataisthebackboneofasuccessfulgenAIdeployment,sochiefdata

officers(CDOs)oftenleadthechargetocreate

thesemodels—bringingtechnology,people,and

processestogethertotransformgenAI’spotentialintorealimpact.YetwhencreatinggenAIoperatingmodels,dataleaderscommonlyfallintotwotraps:

—Techfortech:ThisapproachinvolvesallocatingsignificantresourcestowardgenAIwithouta

clearbusinesspurpose,leadingtosolutions

disconnectedfromreal-worldimpact.ThiscanresultinoverspendingongenAItoolsthatarerarelyusedindailyworkflowsandcreatelittlebusinessvalue.

—Trialanderror:Thisapproachentails

experimentingwithdisparategenAIprojects,butnotdoingsoinacoordinatedmanner.

Thispresentsaparticularriskinsectors

suchastechnology,retail,andbanking,wheregenAIhasthepotentialtoquicklyincrease

productivity.Companiesinindustrieswhere

genAImaytakelongertohaveasignificant

effectonproductivity,suchasagricultureandmanufacturing,couldpotentiallyaffordtowaittodeploythetechnology.

ManybusinessleadersfeelasenseofurgencytodeploygenAI.ThiscreatesanopportunityfordataexecutivestogetapprovalforgenAI

operatingmodelsthatputdataatthecenteroftheorganization.

WhenCDOsandtheirexecutivesupportersare

readytodefineagenAIoperatingmodel,whatare

thefirststepstogetstarted?Andwhatmeasuresshouldcompaniestaketoensuretheseoperatingmodelsmeetrisk,governance,security,and

compliancemeasures?Wepresentapractical

guidedataleaderscanusetocreateagenAI

operatingmodel,includinghowtostructuretalent

teams,organizedataassets,anddeterminewhetheracentralizedordomain-centric

developmentisthebestapproach.

1“

MovingpastgenAI’shoneymoonphase:SevenhardtruthsforCIOstogetfrompilottoscale

,”McKinsey,May13,2024.2“

ThestateofAIinearly2024:GenAIadoptionspikesandstartstogeneratevalue

,”McKinsey,May30,2024.

Adataleader’soperatingguidetoscalinggenAI2

AboutMcKinseyTechnology

McKinseyTechnologyworkswith

organizationsacrosstheprivate,public,

andsocialsectorstocreateopportunitiesaroundcloud,datatransformation,tech

strategy,riskandremediation,andartificialintelligence.McKinseyTechnology

comprisesmorethan2,500peoplein

everygeography—developers,engineers,architects,strategists,andanalysts—

whobringtogethertechnicalexpertiseanddeepindustryknowledge.Weworkcloselywithorganizationstodeliverthe

technologytransformationtheyneedtodayandbuildthecapabilitiesto

embracewhatcomesnext.

DesignagenAIoperatingmodelaroundcomponents

GenAIinnovationismovingatanexceedinglyfastpace,soitmakessensetodesignanoperating

modelthatleveragescomponents.Withthis

approach,acompanycreatesaplanforaddingnewgenAIcomponentstotheenterprisearchitectureatregularintervals,andinwaysthatarealignedwith

businessgoals.Theoperatingmodelenables

changestogenAIcomponentswithouthavingtooverhaulthetechstack.

Ononehand,addinggenAIfunctionalitytomatureelementsthatrequirefewerregularupdates,suchascloudhostinganddatachunking,warrantsa

higherlevelofinvestmentandimplementationcomplexity.Ontheotherhand,fast-moving

elementswithshorterlifecycles,suchasagents

andlargelanguagemodel(LLM)hosting,shouldbequicktoimplementandeasytochange.

Inthisarea,organizationscanbeflexible,first

implementingtheminimumnecessarycomponentsforcriticalgenAIusecases,andthenaddingandremovingcomponentsasneedsevolve.For

instance,aleadingEuropeanbankimplemented

14keygenAIcomponentsacrossitsenterprise

architecture.Thisapproachallowedthebank

toimplement80percentofitscoregenAIuse

casesinjustthreemonths(Exhibit1).Byidentifying

thegenAIcomponentswiththelargestpotentialimpactearlyon,thebankfocuseditsdeveloper

resourcestoproducegenAIfeaturesaligned

withclearmid-tolong-termgoals.However,

whileacomponent-basedapproachtogenAI

deploymentisacrucialsuccessfactorforscalinggenAI,only31percentofgenAIhigh-performersand11percentofothercompanieshaveadoptedthismodel.3

Tosucceedwithacomponent-basedgenAI

developmentmodel,companiescancreateataskforcetoreview,update,andevolvetheroadmap.Thetaskforcealsoassignsexecutionplans,

ensuringIT,data,AI,andbusinessteamshaveappropriateresponsibilitiesforspecificrollouts.

Thisrequiresclearcommunicationbetweena

varietyofstakeholders,includingAIengineers,

softwaredevelopers,datascientists,product

managers,andenterprisearchitects,aswellas

regularreportingtobusinessleads.Coordinationisessentialtoensurethatcomponentrolloutsare

systematizedandalignedwithorganizationalgoalsinsteadofpresentedinaseriesofdisjointedpilots.

3“

ThestateofAIinearly2024:GenAIadoptionspikesandstartstogeneratevalue

,”McKinsey,May30,2024.

Adataleader’soperatingguidetoscalinggenAI3

Exhibit1

ldentifyingcorereusablecomponentscanallowanorganizationtorolloutgenerativeAltoolsquickly·

componentsforgenerativeAltools,illustrativeoEssentialcomponent

DatasourcesAPI1

FilE

web

○Relationaldatabasemanagementsystem

oDocumentdatabase

DatarepositoriesRawdata

oobjectstoragecurateddata

oGraphdatabaseOVectordatabase

○onlinetransactionalprocessing

ocolumnarstorage

DataservicesGenerativeAl

Dataconsumption○API

USErinterface

○chat

OMultimodalinput/output

Hallucinationchecker

validation

Generation

OSourceattribution

opromptlibrary

○LLM2chainand

agentframework

semanticsearchandretrieval

oFunctioncalling

predictiveAl

oInputvalidationoModelparameterconfiguration

processing

●LLMs

ochange

monitoring

oAPIqueriesoP3masking

ochunkingandembedding

Metadatacollection

oMultimodality

oGraphneuralnetwork

oReranking

OCR4andtextExtraction

oEmbedding

oopen-sourcemodels

ETL5

processing

Dataandmodelgovernance

ModelperformancemonitoringOA/BtestingandExperimentationORouting

OModelregistry

oAccuracyevaluation

。"versioning"andreproducibilityoModEl"explainability"

OReusablepipelinesfortrainingandinference

oRequestthrottling

oModeltuningandtraining

ocataloging

OAutomatedbackupandrecovEry

OAccessrequestsoversioning

oExtErnalsharing

controlcentergatewayoFinancialoperations

dentityandaccessmanagementocodemanagement

esecretsmanagement

oInfrastructureoperationsMonitoringandloggingcontainerorchestrationoscheduling

osandboxdevelopmentenvironmentoshared-developmentworkspacesoworkflowmanagement

'Applicationprogramminginterface.2Largelanguagemodel.3personallyidentifiableinformation.4opticalcharacterrecognition.5Extract,transform,load.

Mckinsey&company

Adataleader’soperatingguidetoscalinggenAI4

ChooseanextendedordistinctgenAIteam

WhenbuildingagenAIoperatingmodel,definingacoreteamiscrucial.Therearetwomainoptions:

extendanexistingdataorITteambyequippingthemwithnewgenAIskillsorbuildadistinct

andseparategenAIteam.Thelattercanbe

accomplishedbyselectingpeoplefromanexistingdataorITteamorbyhiringnewtalent.Eachhasitsownadvantagesandconstraints.

Makinganexistingdatateamresponsiblefor

genAImayseemtobetheeasieroption,thoughthependulumcouldshiftasgenAImatures.For

instance,aleadinglogisticsorganizationextendeditsITorganization,whichincludeddatateams,

tolaunchseveralgenAIinitiatives.ThecompanywrappedgenAIintoitsdataandanalyticsroad

map,encouragingexistingteamstoupskillin

genAIcapabilities.WhilethecompanysucceededindeployingagenAIpilot,itwaslimitedinscope.Andfuturerolloutswereslowerthanexpected

becausegenAIproductswereintegratedintothecompany’soveralltechnologyplatform,requiringtimeandresourcestoensurecompliancewith

existingsystems.

DecouplingthegenAIteamfromtheITordataorganizationhasdifferentadvantages.This

approachallowsanorganizationtobuildanewhighlyskilledgenAIteamfromscratch.Witha

solidfoundationindataandAIarchitectures,thenewteamcanquicklyiterateongenAI

componentsoutsideofthelargerITfunction.

SeveralleadingEuropeanbankshavelaunched

suchgenAItaskforces,withtheideatheycould

potentiallyexpandintofull-fledgedcentersof

excellence(CoE).Inhighlyregulatedindustries

suchashealthcareandfinancialservices,creatingnew,centralizedgenAIteamsalsoappearstobethebestpractice.Usingthisapproach,these

companieslaunchedseveralgenAIprojectswithinweeksinsteadofmonths.

Eithermodelcanbesuccessful,butbothhave

pitfallscompaniesshouldbecarefultoavoid.

IfthegenAIteamisdecoupledfromIT,itsroad

mapshouldstillbealignedwiththebroaderIT

organizationtoavoidduplicatingeffortsorbuildingdisconnectedgenAIcomponentsinmultiple

places.Thecapabilitymapandownershipofeachcomponentshouldbeclearlydefinedandsharedacrosstheorganization.Forexample,thegenAItaskforcecouldoverseepromptengineeringandguardrails,LLMoperationsandorchestration,andmodelimprovement—butnotdataingestion,

management,andstorage.

However,ifthegenAIteamexpandsasanoffshootofexistingITanddatafunctions,theteamwillneed

tosuccessfullymanagetwostarklydifferent

technologylifecycles.SpecificgenAIcomponents,suchasLLMhostingandmodelhubs,willneedtobedevelopedandputintoproductionmorerapidlythantraditionalITanddatacomponents,suchas

hostingandcontainers.

Whetheracompanychoosesanextendedor

distinctgenAIteam,itisimportantforacentralITteamtodefineacommonunderlyingtechnologyinfrastructurethattiesallgenAItoolstogether.

Adataleader’soperatingguidetoscalinggenAI5

Avoidingthisstepcouldleadtocomplianceissuesor

technicaldebt

—theextraworkrequiredtofixbuggyproductsthatwereinitiallybuiltforspeedratherthanquality.

Prioritizedatamanagementinstrategicbusinessdomains

Aseverydataleaderknows,effectivedata

managementisapivotalfactorinimplementing

genAI.Withoutafunctionaldataorganization,

genAIapplicationswillnotbeabletoretrieve

andprocesstherightinformationtheyneed.Yetmostenterprisesreportsignificanthurdlesindatautilization,includingissueswithmodelreusability,accessibility,scalability,andquality.Thatiswhy

adatamanagementandgovernancestrategy

shouldbepartofanyoperatingmodelforgenAI.

Governanceincludesmanagingdocumentsourcing,

preparation,curation,andtagging,aswellasensuringdataqualityandcompliance,forbothstructuredandunstructureddata.

Managingvastamountsofunstructureddata,whichcomprisemorethan80percentof

companies’overalldata,mayseemlikeadauntingtask.4Indeed,60percentofgenAIhighperformersand80percentofothercompaniesstruggleto

defineacomprehensivestrategyfororganizing

theirunstructureddata.5Toaddressthischallenge,organizationscanprioritizespecificdomainsand

subdomainsofunstructureddatabasedon

businesspriorities.Forexample,onecompany

mayprioritizeadatadomainthatgroupsallgenAIproductsunderdevelopmentintoonebusiness

unit,whereasanothermayprioritizeadomain

thatgroupsalldatarelatedtoaspecificfunction,suchasfinanceorHR.Theidealdomainsand

subdomainsshouldbesmallenoughtobe

actionablewhilebeingsufficientlylargeenoughtoprovideasignificant,measurableoutcome.

Sincehandlingunstructureddatacanbeunfamiliar

tomanydatateams,theprocessshouldbe

launchedbyexpertsinacentralizedmanner.

Theseexpertsaretypicallydataengineerstrainedtohandleunstructureddata,aswellasnatural-

language-processingengineers,groupedinto

aCoE.Theyestablishandimplementprocesses

formanagingunstructureddatasoitisaccessibletogenAIsystems.Theyensurepoliciesinthe

company’sgenAIoperatingmodelprovideaviewonwhenandwheredataisconsumed.Theyalsoensureconsistentstandardsfordataquality,riskmanagement,andcompliance.

However,oncetheCoEprovidesadeployment

roadmap,domainexpertswithbusinessoversightshouldtakeoverthedatamanagementprocess.Theyarebetterequippedtoextractknowledge

fromspecificrecordsintheirfieldthandata

professionalsalone.Asbusinessunitsbeginto

providemorehigher-qualitydataforawidervarietyofusecases,thecentralizeddatateamstendto

becomeoverwhelmedbythedemandandlacktheexpertisetocheckthequality,veracity,andtaggingofdomain-specificdocuments.

PlanforadecentralizedapproachtogenAIdevelopment

Asdomainteamsbecomemoreadeptatmanagingdata,companiesmaychoosetoprogressively

increasetheseteams’ownershipofgenAI

development—movingfromacentralizedmodeltoafederatedoneandfinallytoadecentralizedone(Exhibit2).Forward-thinkingdataexecutivesmaywanttoensuretheirgenAIoperatingroad

mapsincludefuturescenariosofdecentralizeddevelopment.Therearethreeapproaches

toconsider.

4TamHarbert,“Tappingthepowerofunstructureddata,”MITSloanSchoolofManagement,February1,2021.5“

ThestateofAIinearly2024:GenAIadoptionspikesandstartstogeneratevalue

,”McKinsey,May30,2024.

Adataleader’soperatingguidetoscalinggenAI6

CentralizedgenAI

SomecompanieschoosetocentralizegenAIintotheirowndomains.Thisallowsorganizationsto

buildcapabilitiesquicklyandcontrolcosts.A

leadingglobaltelcousedthismodel,makinggenAIanodetoitsbusinessunits,operatingunderthe

leadershipofachiefdataandAIofficer.The

companywasabletoquicklysetupa

knowledgeablegenAIteambypullingexisting

employeesintoacentralunit.Thisapproachkeptdevelopmentcostslowandreducedtheriskof

multipleteamscreatingsimilarprojects.

Exhibit2

companiescanstartwithcentralizedgenerativeAIdevelopmentandmovetofederatedordecentralizedapproachesasdeploymentsmature.

Domain

Data

sources

Domain-a

Data

sources

Domain-

Data

sources

GenAIteam

processing

Data

repositories

r-Domain

r-Domain

Domain-

Data

sources

GenAIteam

processing

Data

repositories

Data

sources

GenAlteam

Embeddings

Data

repositories

Data

services

GenAdomnain

GenAICentralteam

processing

Datarepositories

Dataservices

GenAICenterofexcellence

Dataservices

ArchetypesofgenerativeAl(genAl)operatingmodels,nonexhaustive

Data

sources

GenAIteam

processing

Data

repositories

Data

services

centralizedFederatedDecentralized

prerequisites

Agilewayofworkingtointegrate·domainteamsinsquads,

coordinatedbyacentralteam

sufficientdomainmaturitytodriveprocessinganddata

repositories

Agilewayofworkingto

coordinateamongcentralteamanddomains

veryhighdomainmaturityandsufficientscaletofullydrive

genAlatdomainlevel

sufficientbudgettobuildtechcapabilities

pros

Fasterskillandcapability

buildingthankstoconcentrationoftalent

Highercontrolofcosts

Higherintegrationamongcenterofexcellenceanddomains,

reducingfrictionandgarneringsupportforusecases

Higherbuy-infromdomainandspecializedresourcestodriverelevantdevelopment

AbilitytocreateagentsdirEctlyfortheirneeds

cons

·GenAldomainpotentially

siloedfromkeydecisionmakingbecauseofdistancefrom

otherdomains

potentialslowedexecutionin

centerofexcellence,especiallyforcross-functionusecases

·potentiallackofconsistency,knowledge,andbestpractices

·Highercostandriskofduplicatingefforts

Mckinsey&company

Adataleader’soperatingguidetoscalinggenAI7

FederatedgenAI

AscompaniesbuildgenAIexpertise,theyoften

chooseafederatedmodel,inwhichbusinessunitsarenotonlyresponsibleforconsumingdatarelatedtotheirdomainsbutalsotakeoverdataprocessing

andrepositories.ThismodelallowsdomainstointegrategenAImoredeeplyintotheirdaily

workflowsforstrongerbusinessoutcomes.

AmajorNorthAmericaninvestmentbankchosethefederatedmodeltodevelopnewgenAIusecaseswithinabusinessunit.ThegenAIusecaseswere

sosuccessfulthatthecompanylaterprovided

fundingtoscalesimilargenAItoolsacrossthe

organization.Thislighthouseprojectmodel,in

whichaninnovativeprojectisdevelopedwithinabusinessunitandthenextendedthroughouttheorganization,canbeasuccessfulwaytoboost

genAIdeploymentwithoutprojectduplication.

DecentralizedgenAI

Someinnovativeorganizationspushdecentralizationevenfurther,transferringallgenAIcapabilitiesto

domains.Inthismodel,eachdomaincreatesitsowngenAIteamcomposedofbusiness,data,andtechnicalexpertsalignedonacommon

goaltodeveloprelevantgenAIapplications.

AdecentralizedmodelofgenAIdevelopment

allowsdomainstocreategenAIagentstailored

specificallytotheirneeds,whichtheycanthen

offertootherdomains.Forexample,amarketing

domainthatcreatesagentsforsocialmediacontentcreationandpostmanagementcouldthensee

thoseagentsadoptedbymanyotherdomains,

suchasbusinessdevelopment,sales,andcustomersuccess.Withthisapproach,itisimportantfora

centralizedITteamtoretainvisibilityintothetoolsbeingdevelopedtoavoidblindspotsandensurenotwoteamsdevelopsimilargenAItools.

Unifyfederatedteamsthroughcommoninfrastructure

Whilebusinessunitsknowwhicheveryday

problemstheyneedtosolvewithgenAIandare

thuswellplacedtobuildspecificusecaseswithintheirowndomains,thisdecentralizeddevelopmentprocessshouldnevercompromisethecompany’soverallsecurityorresiliency.Instead,companies

shouldensureITteamsbuildandmanageanunderlyingcommoninfrastructureontopof

whichallgenAItoolsaredevelopedanddeployed.TheITteamshouldalsoberesponsibleforbuildingrepeatableplatformsthatcanbeusedbyall

thebusinessunits,suchasapromptlibrary,a

repositoryforPythoncode,standardagents,and

systemizedcloudstorage.ThistypeofcentralizedITmanagementempowersbusinessunitstocreatenewgenAItools,whileensuringallusecasestheydevelopadheretoahighlysecureandunified

technologyframework.

Emphasizeriskandcompliancegovernance

GenAIcomeswithheightenedrisks,including

potentialhallucinations,misinformation,anddataleaks.ThatiswhyeverygenAIoperatingmodelshouldincludeexplicitstipulationsfor

riskand

compliancegovernance

.Companiescanstartbydelineatingthelevelsofrisktheyarewillingto

toleratewithgenAIandwhichareasofthe

businessrequiremoresafeguards.ThisinitialriskassessmentevaluatesthediversewaysagenAIapplicationcouldaffectthecompany,customers,andpartners.Whenthisriskassessmentis

complete,companiescancreateagovernanceandmonitoringplan,whichshouldalsodefineanynewquantitativeandqualitativeteststhatneedtobeconducted.Bymitigatingrisks,

companiescanmoveforwardwithgenAIrolloutsinsteadoftakingawait-and-seeapproachthat

couldhampercompetitiveness.

Adataleader’soperatingguidetoscalinggenAI8

Findmorecontentlikethisonthe

MckinseyInsightsAPP

scan·Download·personalize

andagilegenAIdeployments.AstrongAI

governanceplanalsohelpscompanieskeeppacewithconstantlyshiftingAIregulations.Forexample,

theEUArtificialIntelligenceActemphasizes

theneedfortransparency,requiringorganizationstonotifyusersaboutAIrisks,ensuremodel

outputquality,andconductregularcomplianceassessments.Legislationinmanycountries

requirescompaniestomeetprivacystandards

thatcanaffecthowgenAItoolsarepermittedto

consumedata.AnygenAIgovernancemodelmustbeflexibleenoughtotakerelevantregulations

andupdatesintoaccount.

Inpracticalterms,creatingagenAIriskplan

involvesasix-stepprocessthatdataleadersmustcontinuallymonitorandupdateasnewpotential

risksa

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论