版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第九章统计与成对数据的统计分析第1讲随机抽样、统计图表
课标要求命题
点五年考情命题分析预测1.了解简单随机抽样的含义及其解决问题
的过程,掌握两种简单随机抽样方法:
抽签法与随机数法.会计算样本均值和样
本方差,了解样本与总体的关系.2.了解分层随机抽样的特点和适用范围,
了解分层随机抽样的必要性,掌握各层
样本量比例分配的方法.掌握分层随机抽
样的样本均值和样本方差.随机
抽样2023新高考
卷ⅡT3;
2020全国卷
ⅡT18本讲为高考的命题
热点,主要考查:
(1)分层随机抽
样,题型以选择题
和填空题为主,属
于中低档题;课标要求命题
点五年考情命题分析预测3.能根据实际问题的特点,设
计恰当的抽样方法解决问题.4.能根据实际问题的特点,选
择恰当的统计图表对数据进
行可视化描述,体会合理使
用统计图表的重要性.统计
图表2023新高考
卷ⅡT19;
2022新高考
卷ⅡT19;
2020新高考
卷ⅡT9;
2019全国卷
ⅢT17(2)统计图表的应用,着重考查
频率分布表、频率分布直方
图、条形图、折线图等,单独
命题时以小题形式出现,与其
他知识综合命题时常作为问题
情境出现在解答题中.预计2025
年高考命题趋势变化不大,重
点在情境的创新.
学生用书P208
1.简单随机抽样(1)分类:放回简单随机抽样和不放回简单随机抽样.除非特殊说明,本章所称的简单
随机抽样指不放回简单随机抽样.(2)常用方法:①
和②
.抽签法
随机数法
辨析比较1.抽签法和随机数法的异同:(1)都是逐个、不放回抽样;(2)总体中个体数不多时选
择抽签法,总体量较大,样本量较小时选择随机数法.2.能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.2.分层随机抽样一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一
个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样
本合在一起作为总样本,这样的抽样方法称为③
,每一个子总体
称为④
.在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这
种样本量的分配方式为⑤
.分层随机抽样
层
比例分配
辨析比较简单随机抽样与分层随机抽样的辨析抽样方
法共同点各自特点相互联系适用范围简单随
机抽样(1)抽样过程中每个个体被抽到的机会均等;(2)都是不放回抽样.从总体中逐个抽取.分层随机抽样
在各层抽样时
可采用简单随
机抽样.样本容量较小.抽样方
法共同点各自特点相互联系适用范围分层随
机抽样(1)抽样过程中
每个个体被抽
到的机会均
等;(2)都是不放回
抽样.将总体分成互不
交叉的层,分层
进行抽取.分层随机抽样
在各层抽样时
可采用简单随
机抽样.总体可以分层,层与
层之间有明显区别,
而层内个体间差异较
小.3.统计图表(1)常见的统计图表有条形图、扇形图、折线图、频率分布表、频率分布直方图等.(2)频率分布直方图的制作步骤a.求极差.极差为一组数据中最大值与最小值的⑥
.b.决定组距与组数.当样本量不超过100时,常分成5~12组.为方便起见,一般取等长
组距,并且组距应力求“取整”.c.将数据分组.使第一组的左端点略小于数据中的最小值,最后一组的右端点略大于
数据中的最大值.d.列频率分布表.计算各小组的频率,作出频率分布表.e.画频率分布直方图.在频率分布直方图中,纵轴表示⑦
.差
1.下列说法正确的是(
D
)A.从无限多个个体中抽取100个个体作为样本是简单随机抽样B.某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛是简单随机抽
样C.从某厂生产的5000件产品中抽取600件进行质量检验,可用抽签法D.某校有2000名学生,其中高一年级700人,高二年级600人,高三年级700人,现
从中抽取20人了解学生在校学习压力的情况,可用分层随机抽样的方法抽取D1234[解析]
A选项,不是简单随机抽样,因为题中被抽取的总体中的个体数是无限的,
而不是有限的;B选项,不是简单随机抽样,个子最高的5名同学是确定的,不是等
可能抽样;C选项是简单随机抽样,但总体中的个体数太多,不宜采用抽签法;D选
项,三个年级的学生个体差异比较明显,所以适用分层随机抽样.12342.某公司生产三种型号的轿车,产量分别为1500辆,6000辆和2000辆.为检验该公
司这三种型号轿车的质量,公司质检部要抽取57辆进行检验,则下列说法错误的是
(
B
)A.应采用分层随机抽样的方法抽取B.应采用简单随机抽样抽取C.三种型号的轿车依次应抽取9辆,36辆,12辆D.这三种型号的轿车,每一辆被抽到的可能性相等B1234
12343.中国古代科举制度始于隋而成于唐,兴盛于明、清两朝.明代会试分南卷、北卷、
中卷,按11∶7∶2的比例录取,若某年会试录取人数为100,则中卷录取人数为
(
A
)A.10B.35C.55D.75
A12344.[教材改编]某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频
率分布直方图(如图所示),由图中数据可知
a
=
.若要从身高在[120,
130),[130,140),[140,150]三组内的学生中,用分层随机抽样的方法选取18人参
加一项活动,则从身高在[140,150]内的学生中选取的人数应为
.0.030
3
1234
1234
学生用书P209命题点1
随机抽样
角度1
简单随机抽样例1(1)下列抽取样本的方式属于简单随机抽样的是(
B
)A.从平面直角坐标系中抽取5个点作为样本B.盒子里共有80个零件,从中抽取5个零件进行质量检验.在抽样时,从中任意拿出
一个零件进行质量检验后不再把它放回盒子里C.从20件玩具中一次性抽取3件进行质量检验D.某班有50名学生,指定数学成绩排名前三的3名学生参加学校组织的数学竞赛B例1例2训练1例3例4训练2[解析]
A不是简单随机抽样,因为被抽取样本的总体的个数是无限的,而不是有限
的.B是简单随机抽样.C不是简单随机抽样,因为这是“一次性”抽取,而不是“逐
个”抽取.D不是简单随机抽样,因为不是等可能抽样.例1例2训练1例3例4训练2(2)设某总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选
取5个个体,选取方法是从下面随机数表第1行第5列的数字开始,从左到右依次选
取两个数字,则选出来的第5个个体编号为
.18180792454417165807798386196216765003105523640505266238[解析]由题意得,选出来的这5个个体的编号依次是07,17,16,19,03,所以选
出来的第5个个体编号为03.03
例1例2训练1例3例4训练2方法技巧(1)简单随机抽样需满足:①被抽取的样本总体的个体数有限;②逐个抽取;③等可
能抽取.(2)用随机数法选取样本时,要剔除重复的编号并重新产生随机数,直到产生的不同
编号个数等于样本所需要个数.例1例2训练1例3例4训练2角度2
分层随机抽样例2(1)某中学有高中生960人,初中生480人,为了了解学生的身体状况,采用分层
随机抽样的方法,从该校学生中抽取容量为
n
的样本,其中高中生有24人,那么
n
等于(
D
)A.12B.18C.24D.36
D例1例2训练1例3例4训练2(2)某口罩厂的三个车间在一个小时内共生产3600个口罩,在出厂前要检查这批口
罩的质量,现决定采用分层随机抽样的方法进行抽取,若从第一、二、三车间抽取
的口罩个数分别为
a
,
b
,
c
,且
a
,
b
,
c
成等差数列,则第二车间生产的口罩个
数为(
C
)A.800B.1000C.1200D.1500
C例1例2训练1例3例4训练2
例1例2训练1例3例4训练2训练1(1)“夸父一号”的成功发射,实现了我国天基太阳探测卫星跨越式突破,某
中学为此举行了“讲好航天故事”演讲比赛.若将报名的30位同学按01,02,…,30
进行编号,利用下面的随机数表来决定他们的出场顺序,选取方法是从随机数表第
1行的第3列的数字开始,由左到右依次选取两个数字,则选取的第5位同学的编号
为(
C
)4567321212310701085213200112512932049234493582003623486969387481A.23B.20C.13D.12[解析]依次从随机数表中选取的有效编号为12,07,01,08,13,故选取的第5位
同学的编号为13.故选C.C例1例2训练1例3例4训练2(2)[多选]已知某地区有小学生120000人,初中生75000人,高中生55000人,当地
教育部门为了解本地区中小学生的近视率,按小学生、初中生、高中生进行分层随
机抽样,抽取一个容量为2000的样本,得到小学生、初中生、高中生的近视率分别
为30%,70%,80%.下列说法中正确的有(
ABD
)A.从高中生中抽取了440人C.估计该地区中小学生总体的平均近视率为60%D.估计高中生的近视人数为44000ABD例1例2训练1例3例4训练2
例1例2训练1例3例4训练2命题点2
统计图表角度1
条形图、扇形(饼)图、折线图例3(1)[2023四川南充模拟]下图是甲、乙两人高考前10次数学模拟成绩的折线图,
则下列说法错误的是(
C
)CA.甲的数学成绩最后3次逐渐升高B.甲的数学成绩在130分及以上的次数多于乙的数学成绩在130分及以上的次数C.甲有5次考试成绩比乙高D.甲数学成绩的极差小于乙数学成绩的极差例1例2训练1例3例4训练2[解析]对于A,由题图可知甲的最后三次数学成绩逐渐升高,故A说法正确.对于
B,甲的数学成绩在130分及以上的次数为6,乙的数学成绩在130分及以上的次数为
5,故B说法正确.对于C,甲有7次考试成绩比乙高,故C说法错误.对于D,由题图可
知,甲、乙两人的数学成绩的最高成绩相同,甲的最低成绩为120分,乙的最低成
绩为110分,因此甲的数学成绩的极差小于乙的数学成绩的极差,D说法正确.故选C.例1例2训练1例3例4训练2(2)[多选/2023济南市模拟]某学校组建了辩论、英文剧场、民族舞、无人机和数学建
模五个社团,高一学生全员参加,且每位学生只能参加一个社团.学校根据学生参加
情况绘制如下统计图,已知参加无人机社团和参加数学建模社团的学生人数相等,
下列说法正确的是(
AC
)ACA.高一年级学生人数为120B.参加无人机社团的学生人数为17C.若按比例分层随机抽样从各社团抽取20人,则从无人机社团抽取的学生人数为3D.若甲、乙、丙三人报名参加社团,则共有60种不同的报名方法例1例2训练1例3例4训练2
例1例2训练1例3例4训练2方法技巧统计图表的主要应用(1)扇形图:直观描述各类数据占总数的比例.(2)折线图:描述数据随时间的变化趋势.(3)条形图和频率分布直方图:直观描述不同类别或分组数据的频数和频率.例1例2训练1例3例4训练2角度2
频率分布直方图例4[2023长沙雅礼中学模拟]某学校为了调查学生一周在生活方面的支出(单位:元)
情况,抽出了一个容量为
n
的样本,其频率分布直方图如图所示,其中支出在[50,
60]内的学生有60人,则下列说法不正确的是(
A
)AA.样本中支出在[50,60]内的频率为0.03B.样本中支出不少于40元的人数为132C.n的值为200D.若该校有2000名学生,则约有600人支出在[50,60]内例1例2训练1例3例4训练2
例1例2训练1例3例4训练2
例1例2训练1例3例4训练2训练2(1)[2023陕西省宝鸡市质检]某市教育局为得到高三年级学生身高的数据,对
高三年级学生进行抽样调查,随机抽取了1000名学生,他们的身高都在
A
,
B
,
C
,
D
,
E
五个层次内,分男、女生统计得到如下图所示的样本分布统计图,则
(
B
)BA.样本中A层次的女生比相应层次的男生人数多B.估计样本中男生身高的中位数比女生身高的中位数大C.D层次的女生和E层次的男生在整个样本中的频率相等D.样本中B层次的学生人数和C层次的学生人数一样多例1例2训练1例3例4训练2
例1例2训练1例3例4训练2样本中
C
层次的学生数为0.25
y
+0.3(1000-
y
)=300-0.05
y
,由于
y
的取值未知,所以250+0.05
y
与300-0.05
y
可能不相等,D错误;女生中
A
,
B
两个层次的频率之和为0.5,所以女生的样本身高中位数为
B
,
C
层次
的分界点,而男生
A
,
B
两个层次的频率之和为0.35,
A
,
B
,
C
三个层次的频率之
和为0.65,显然中位数落在
C
层次内,所以样本中男生身高的中位数比女生身高的
中位数大,B正确.故选B.例1例2训练1例3例4训练2(2)[多选/2023南京市、盐城市二模]新能源汽车包括纯电动汽车、增程式电动汽车、混合动力汽车、燃料电池电动汽车、氢发动机汽车等.我国的新能源汽车发展开始于21世纪初,近年来发展迅速,连续8年产销量位居世界第一.图1,图2分别是2017年至2022年我国新能源汽车年产量和占比(占我国汽车年总产量的比例)情况,则(
BCD
)A.2017—2022年我国新能源汽车年产量逐年增加B.2017—2022年我国新能源汽车年产量的极差为626.4万辆C.2022年我国汽车年总产量超过2700万辆D.2019年我国汽车年总产量低于2018年我国汽车年总产量图1图2例1例2训练1例3例4训练2BCD[解析]对于选项A,题图1中2019年新能源汽车年产量低于2018年新能源汽车年产
量,A错误;对于选项B,极差为705.8-79.4=626.4(万辆),B正确;对于选项C,2022年我国汽车年总产量为705.8÷25.6%≈2757(万辆),C正确;对于选项D,2019年我国汽车年总产量为124.2÷4.8%≈2588(万辆),2018年我国汽车年总产量为127÷4.5%≈2822(万辆),D正确.故选BCD.例1例2训练1例3例4训练2
1.[命题点1角度2/2023新高考卷Ⅱ]某学校为了解学生参加体育运动的情况,用比例
分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,
已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有(
D
)
D12342.[命题点2角度1/全国卷Ⅰ]某地区经过一年的新农村建设,农村的经济收入增加了一
倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村
建设前后农村的经济收入构成比例,得到如图所示的饼图:则下面结论中不正确的是(
A
)AA.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半1234[解析]
解法一设建设前经济收入为
a
,则建设后经济收入为2
a
,则由饼图可得
建设前种植收入为0.6
a
,其他收入为0.04
a
,养殖收入为0.3
a
.建设后种植收入为
0.74
a
,其他收入为0.1
a
,养殖收入为0.6
a
,养殖收入与第三产业收入的总和为1.16
a
,所以只有A是错误的.解法二设新农村建设前经济收入为
x
,则新农村建设后经济收入为2
x
.因为0.6
x
<0.37×2
x
,所以新农村建设后,种植收入增加,而不是减少,所以A是
错误的.12343.[命题点2角度2/2021全国卷甲]为了解某地农村经济情况,对该地农户家庭年收入
进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是(
C
)CA.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间1234[解析]对于A,根据频率分布直方图可知,家庭年收入低于4.5万元的农户比率约
为(0.02+0.04)×1×100%=6%,故A正确;对于B,根据频率分布直方图可知,家
庭年收入不低于10.5万元的农户比率约为(0.04+0.02+0.02+0.02)×1×100%=10%,故B正确;对于C,根据频率分布直方图可知,该地农户家庭年收入的平均值约为3×0.02+4×0.04+5×0.10+6×0.14+7×0.20+8×0.20+9×0.10+10×0.10+
11×0.04+12×0.02+13×0.02+14×0.02=7.68(万元),故C错误;对于D,根据频
率分布直方图可知,家庭年收入介于4.5万元至8.5万元之间的农户比率约为(0.10+
0.14+0.20+0.20)×1×100%=64%>50%,故D正确.12344.[命题点2角度2/全国卷Ⅰ]某家庭记录了未使用节水龙头50天的日用水量数据(单
位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,
0.2)[0.2,
0.3)[0.3,
0.4)[0.4,
0.5)[0.5,
0.6)[0.6,
0.7]频数132492651234日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,
0.6]频数151310165使用了节水龙头50天的日用水量频数分布表1234(1)在图中作出使用了节水龙头50天的日用水量数据的频率分布直方图;1234[解析]
(1)频率分布直方图如图所示.1234(2)估计该家庭使用节水龙头后,日用水量小于0.35m3的概率;(2)根据(1)中的频率分布直方图,知该家庭使用节水龙头50天日用水量小于0.35m3的
频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后,日用水量小于0.35m3的概率的估计值为0.48.1234
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中
的数据以这组数据所在区间中点的值作代表)1234
学生用书·作业帮P3731.[2024宝鸡段考]下列4个抽样中,简单随机抽样的个数是(
B
)①从无数个个体中抽取50个个体作为样本;②仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;③某连队从200名党员官兵中,挑选出50名最优秀的赶赴某市参加抗洪救灾工作;④一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6
个号签.BA.0B.1C.2D.3123456789101112[解析]
①不是简单随机抽样,因为简单随机抽样要求被抽取的样本总体的个数是
有限的.②不是简单随机抽样,虽然“一次性抽取”和“逐个抽取”不影响个体被抽
到的可能性,但简单随机抽样要求的是“逐个抽取”.③不是简单随机抽样,因为50
名党员官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合
简单随机抽样中“等可能抽样”的要求.④是简单随机抽样,因为总体中的个体数是
有限的,并且是从总体中逐个进行抽取的,是等可能抽样.故选B.1234567891011122.[2024四川遂宁月考]从遂宁市中小学生中抽取部分学生,进行肺活量调查.经了
解,该市小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生
的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是(
C
)A.简单随机抽样B.按性别分层随机抽样C.按学段分层随机抽样D.按学校分层随机抽样[解析]
已经了解到该市小学、初中、高中三个学段学生的肺活量有较大差异,而
同一学段男女生的肺活量差异不大,因此按学段分层随机抽样,这种方式具有代表
性,比较合理.故选C.C1234567891011123.[2024河南郑州模拟]为了树立和践行绿水青山就是金山银山的理念,
A
市某高中
全体教师开展了植树活动,购买柳树、银杏、梧桐、樟树四种树苗共计600棵,比
例如图所示.青年教师、中年教师、老年教师报名参加植树活动的人数之比为
5∶3∶2,若每种树苗均按各年龄段报名人数的比例进行分配,则中年教师应分得
梧桐树苗(
C
)A.30棵B.50棵C.72棵D.80棵C
1234567891011124.[2024四川乐山月考]为研究某药品的疗效,选取若干名志愿者进行临床试验,所
有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),
[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第
五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,
第三组中没有疗效的有8人,则第三组中有疗效的人数为(
B
)A.8B.10C.12D.18B
1234567891011125.[2023上海春季高考]如图为2017—2021年中国货物进出口总额的统计图,则下列
说法错误的是(
C
)A.从2018年开始,每年与上一年相比,2021年的进出口总额增长率最大B.从2018年开始,进出口总额逐年增大C.从2018年开始,进口总额逐年增大D.从2018年开始,每年与上一年相比,2020年的进出口总额增长率最小C123456789101112
1234567891011126.[多选]某商户收集并整理了其在2023年1月到8月线上和线下收入的数据,并绘制
如图所示的折线图,则下列结论正确的是(
ACD
)A.该商户这8个月中,月收入最高的是7月B.该商户这8个月的线上总收入低于线下总收入C.该商户这8个月中,线上、线下收入相差最小的是7月D.该商户这8个月中,月收入不少于17万元的频率是0.5ACD123456789101112[解析]对于A:该商户这8个月中,月收入分别为16万元,13.5万元,16万元,17
万元,17万元,16万元,20万元,17.5万元,月收入最高的是7月,A正确;(提醒:
月收入包含线上收入和线下收入)对于B:该商户这8个月的线上总收入为72万元,线下总收入为61万元,B错误;对
于C:根据折线图可看出该商户这8个月中,线上、线下收入相差最小的是7月,C正
确;对于D:该商户这8个月中,月收入不少于17万元的有4个月,故所求频率为
0.5,D正确.1234567891011127.[2024山西模拟]总体由编号为1,2,…,99,100的100个个体组成.现用随机数法
选取60个个体,利用电子表格软件产生的若干个1~100范围内的整数随机数的开始
部分数据如下,则选出来的第5个个体的编号为
.8
44
2
17
8
31
57
4
55
6
88
77
7447
7
21
76
33
50
63[解析]
简单随机抽样中,随机数法获取的个体编号要在指定编号范围内,遇到大
于最大编号或者重复号码舍去不要,由给定的数据,从8数起至第5个仍是8,重
复,舍去,所以选中的第5个个体的编号为31.31
1234567891011128.一工厂生产了16800件某种产品,它们分别来自甲、乙、丙3条生产线.为检查这
批产品的质量,决定采用分层随机抽样的方法进行抽样.已知从甲、乙、丙3条生产
线抽取的产品个数分别是
a
,
b
,
c
,且2
b
=
a
+
c
,则乙生产线生产了
件产品.
5600
1234567891011129.[2024海南校考]某网站推出了关于生态文明建设进展情况的调查,调查数据表
明,环境治理和保护问题仍是百姓关心的热点,参与调查者中关注此问题的约占80
%.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:
第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度生态循环农业雏鸡养殖合作合同4篇
- 二零二五年度食品行业质量管理体系认证合同3篇
- 二零二五年度出租车股份托管与收益分配合同4篇
- 二零二五年度虚拟现实教学视频制作合同2篇
- 2025年度图书代销合作框架协议范本6篇
- 研究合作与合同管理制度
- 二零二四年度印刷品质量检测与认证协议3篇
- 物业管理公司2025年度合同管理规范2篇
- 2025年个人与个人草原养殖合作协议范本4篇
- 2025年度城市地下管线探测承包合同格式规范4篇
- 湖北省石首楚源“源网荷储”一体化项目可研报告
- 医疗健康大数据平台使用手册
- 碳排放管理员 (碳排放核查员) 理论知识考核要素细目表四级
- 撂荒地整改协议书范本
- 诊所负责人免责合同范本
- 2024患者十大安全目标
- 会阴切开伤口裂开的护理查房
- 实验报告·测定鸡蛋壳中碳酸钙的质量分数
- 部编版小学语文五年级下册集体备课教材分析主讲
- 电气设备建筑安装施工图集
- 《工程结构抗震设计》课件 第10章-地下建筑抗震设计
评论
0/150
提交评论