版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市九级2025届八年级数学第一学期期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在△ABC中,AD是BC边上的高,且∠ACB=∠BAD,AE平分∠CAD,交BC于点E,过点E作EF∥AC,分别交AB、AD于点F、G.则下列结论:①∠BAC=90°;②∠AEF=∠BEF;③∠BAE=∠BEA;④∠B=2∠AEF,其中正确的有()A.4个 B.3个 C.2个 D.1个2.下列实数为无理数的是()A.0.101 B. C. D.3.如图,在中,,,于点,的平分线分别交、于、两点,为的中点,的延长线交于点,连接,下列结论:①为等腰三角形;②;③;④.其中正确的结论有()A.个 B.个 C.个 D.个4.下列交通标志中,轴对称图形的个数为()A.4个 B.3个 C.2个 D.1个5.关于一次函数,下列结论正确的是()A.图象过点(3,-1) B.图象不经过第四象限C.y随x的增大而增大 D.函数图象与两坐标轴所围成的三角形面积是66.三角形的三边长可以是()A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,137.若分式的值为零,则x的值为()A.3 B.3或-3 C.-3 D.08.如图,“士”所在位置的坐标为,“相”所在位置的坐标为,那么“炮”所在位置的坐标为()A. B. C. D.9.如图,在△ABC中,∠B=90º,AC=10,AD为此三角形的一条角平分线,若BD=3,则三角形ADC的面积为()A.3 B.10 C.12 D.1510.△ABC三边长分别为a、b、c,则下列条件不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5 B.a=4,b=5,c=6C.a=6,b=8,c=10 D.a=5,b=12,c=1311.在下列各原命题中,其逆命题为假命题的是()A.直角三角形的两个锐角互余B.直角三角形两条直角边的平方和等于斜边的平方C.等腰三角形两个底角相等D.同角的余角相等12.下列命题是假命题的是A.全等三角形的对应角相等 B.若||=-,则a>0C.两直线平行,内错角相等 D.只有锐角才有余角二、填空题(每题4分,共24分)13.如图所示,于点,且,,若,则___.14.如图,平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点B的坐标为(10,6),点P为BC边上的动点,当△POA为等腰三角形时,点P的坐标为_________.15.的3倍与2的差不小于1,用不等式表示为_________.16.因式分解:________;________.17.如图AB∥CD,∠B=72°,EF平分∠BEC,EG⊥EF,则∠DEG=______°.18.已知关于的方程无解,则m=________.三、解答题(共78分)19.(8分)某中学举行“中国梦·校园好声音”歌手大赛,高、初中根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩(满分100)如下图所示:根据图示信息,整理分析数据如下表:平均数(分)中位数(分)众数(分)初中部85高中部85100(说明:图中虚线部分的间隔距离均相等)(1)求出表格中的值;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.20.(8分)在解分式方程时,小马虎同学的解法如下:解:方程两边同乘以,得移项,得解得你认为小马虎同学的解题过程对吗?如果不对,请你解这个方程.21.(8分)阅读与思考x2+(p+q)x+pq型式子的因式分解x2+(p+q)x+pq型式子是数学学习中常见的一类多项式,如何将这种类型的式子分解因式呢?我们通过学习,利用多项式的乘法法则可知:(x+p)(x+q)=x2+(p+q)x+pq,因式分解是整式乘法相反方向的变形,利用这种关系可得x2+(p+q)x+pq=(x+p)(x+q).利用这个结果可以将某些二次项系数是1的二次三项式分解因式,例如,将x2﹣x﹣6分解因式.这个式子的二次项系数是1,常数项﹣6=2×(﹣3),一次项系数﹣1=2+(﹣3),因此这是一个x2+(p+q)x+pq型的式子.所以x2﹣x﹣6=(x+2)(x﹣3).上述过程可用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数,如图所示.这样我们也可以得到x2﹣x﹣6=(x+2)(x﹣3).这种分解二次三项式的方法叫“十字相乘法”.请同学们认真观察,分析理解后,解答下列问题:(1)分解因式:y2﹣2y﹣1.(2)若x2+mx﹣12(m为常数)可分解为两个一次因式的积,请直接写出整数m的所有可能值.22.(10分)已知:如图,在等腰三角形ABC中,120BAC180,ABAC,ADBC于点D,以AC为边作等边三角形ACE,ACE与ABC在直线AC的异侧,直线BE交直线AD于点F,连接FC交AE于点M.(1)求EFC的度数;(2)求证:FE+FA=FC.23.(10分)在综合与实践课上,同学们以“一个含的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线且和直角三角形,,,.操作发现:(1)在如图1中,,求的度数;(2)如图2,创新小组的同学把直线向上平移,并把的位置改变,发现,说明理由;实践探究:(3)缜密小组在创新小组发现结论的基础上,将如图中的图形继续变化得到如图,平分,此时发现与又存在新的数量关系,请直接写出与的数量关系.24.(10分)(1)如图(1)在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE;(2)如图(2)将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请给出证明;若不成立,请说明理由.25.(12分)在△ABC中,AB=AC,∠BAC=(),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连结DE,若∠DEC=45°,求的值.26.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于,那么每套售价至少是多少元?
参考答案一、选择题(每题4分,共48分)1、B【解析】利用高线和同角的余角相等,三角形内角和定理即可证明①,再利用等量代换即可得到③④均是正确的,②缺少条件无法证明.【详解】解:由已知可知∠ADC=∠ADB=90°,∵∠ACB=∠BAD∴90°-∠ACB=90°-∠BAD,即∠CAD=∠B,∵三角形ABC的内角和=∠ACB+∠B+∠BAD+∠CAD=180°,∴∠CAB=90°,①正确,∵AE平分∠CAD,EF∥AC,∴∠CAE=∠EAD=∠AEF,∠C=∠FEB=∠BAD,②错误,∵∠BAE=∠BAD+∠DAE,∠BEA=∠BEF+∠AEF,∴∠BAE=∠BEA,③正确,∵∠B=∠DAC=2∠CAE=2∠AEF,④正确,综上正确的一共有3个,故选B.【点睛】本题考查了三角形的综合性质,高线的性质,平行线的性质,综合性强,难度较大,利用角平分线和平行线的性质得到相等的角,再利用等量代换推导角之间的关系是解题的关键.2、D【解析】由题意根据无理数的概念即无理数就是无限不循环小数,进行分析判断可得答案.【详解】解:A、0.101是有理数,B、=3是有理数,C、是有理数,D、是无限不循环小数即是无理数,故选:D.【点睛】本题考查的是无理数的概念、掌握算术平方根的计算方法是解题的关键.3、D【分析】①由等腰直角三角形的性质得∠BAD=∠CAD=∠C=45°,再根据三角形外角性质可得到∠AEF=∠AFE,可判断△AEF为等腰三角形,于是可对①进行判断;求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,证△DFB≌△DAN,即可判断②③;连接EN,只要证明△ABE≌△NBE,即可推出∠ENB=∠EAB=90°,由此可知判断④.【详解】解:∵等腰Rt△ABC中,∠BAC=90°,AD⊥BC,∴∠BAD=∠CAD=∠C=45°,BD=AD,∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC=22.5°,∴∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5°,∴∠AEF=∠AFE,∴AF=AE,即△AEF为等腰三角形,所以①正确;∵为的中点,∴AM⊥BE,∴∠AMF=∠AME=90°,∴∠DAN=90°−67.5°=22.5°=∠MBN,在△FBD和△NAD中,∴△FBD≌△NAD(ASA),∴DF=DN,AN=BF,所以②③正确;∵AM⊥EF,∴∠BMA=∠BMN=90°,∵BM=BM,∠MBA=∠MBN,∴△MBA≌△MBN,∴AM=MN,∴BE垂直平分线段AN,∴AB=BN,EA=EN,∵BE=BE,∴△ABE≌△NBE,∴∠ENB=∠EAB=90°,∴EN⊥NC,故④正确,故选:D.【点睛】本题考查了全等三角形的判定与性质、三角形外角性质、三角形内角和定理、垂直平分线的性质,能正确证明推出两个三角形全等是解此题的关键,主要考查学生的推理能力.4、B【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【详解】解:第1个是轴对称图形,符合题意;第2个是轴对称图形,符合题意;第3个不是轴对称图形,不合题意;第4个是轴对称图形,符合题意;故选:B.【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.5、D【分析】根据一次函数的性质,依次分析各个选项,选出正确的选项即可.【详解】解:A、令,则,则图像过点(3,1);故A错误;B、由,则一次函数经过第二、四象限,故B错误;C、由,则y随x的增大而减小;故C错误;D、令,则,令,则,则面积为:;故D正确;故选:D.【点睛】本题考查了一次函数图象上点的坐标特征和一次函数的性质,正确掌握一次函数的性质是解题的关键.6、D【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边可得出答案.在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】A.2,11,13中,2+11=13,不合题意;B.5,12,7中,5+7=12,不合题意;C.5,5,11中,5+5<11,不合题意;D.5,12,13中,5+12>13,能组成三角形;故选D.【点睛】此题考查了三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.7、C【分析】分式值为零的条件:分子为0且分母不为0时,分式值为零.【详解】解:由题意得,解得,则x=-3故选C.【点睛】本题考查分式值为零的条件,本题属于基础应用题,只需学生熟练掌握分式值为零的条件,即可完成.8、B【分析】由士和相的坐标推得坐标原点所在的位置,即可得出“炮“所在的位置坐标.【详解】解:根据“士”所在位置的坐标为(−1,−2),“相”所在位置的坐标为(2,−2)可建立如图所示坐标系,∴“炮”所在位置为(−3,1),故选:B.【点睛】本题考查了坐标确定位置的知识,解答本题的关键是要建立合适的坐标系.9、D【分析】过D作DE⊥AC于E,根据角平分线性质得出BD=DE=3,再利用三角形的面积公式计算即可.【详解】解:过D作DE⊥AC于E.
∵AD是∠BAC的角平分线,∠B=90°(DB⊥AB),DE⊥AC,
∴BD=DE,
∵BD=3,
∴DE=3,
∴S△ADC=•AC•DE=×10×3=15
故选D.【点睛】本题考查了角平分线的性质,注意:角平分线上的点到角两边的距离相等.10、B【解析】根据勾股定理进行判断即可得到答案.【详解】A.∵32+42=52,∴△ABC是直角三角形;B.∵52+42≠62,∴△ABC不是直角三角形;C.∵62+82=102,∴△ABC是直角三角形;D.∵122+42=132,∴△ABC是直角三角形;故选:B.【点睛】本题考查勾股定理的应用,解题的关键是掌握勾股定理.11、D【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】A、逆命题是:两个锐角互余的三角形是直角三角形,是真命题,故此选项不符合题意;B、逆命题是:如果一个三角形有两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形,是真命题,故此选项不符合题意;C、逆命题是:有两个角相等的三角形是等腰三角形,是真命题,故此选项不符合题意;D、逆命题是:如果两个角相等,那么它们是同一个角的余角,是假命题,故此选项符合题意.故选:D.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.12、B【分析】分别根据全等三角形的性质、绝对值的性质、平行线的性质和余角的性质判断各命题即可.【详解】解:A.全等三角形的对应角相等,是真命题;B.若||=-,则a≤0,故原命题是假命题;C.两直线平行,内错角相等,是真命题;D.只有锐角才有余角,是真命题,故选:B.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题真假的关键是要熟悉课本中的性质定理.二、填空题(每题4分,共24分)13、27°【分析】连接AE,先证Rt△ABD≌Rt△CBD,得出四边形ABCE是菱形,根据菱形的性质可推导得到∠E的大小.【详解】如下图,连接AE∵BE⊥AC,∴∠ADB=∠BDC=90°∴△ABD和△CBD是直角三角形在Rt△ABD和Rt△CBD中∴Rt△ABD≌Rt△CBD∴AD=DC∵BD=DE∴在四边形ABCE中,对角线垂直且平分∴四边形ABCE是菱形∵∠ABC=54°∴∠ABD=∠CED=27°故答案为:27°【点睛】本题考查菱形的证明和性质的运用,解题关键是先连接AE,然后利用证Rt△ABD≌Rt△CBD推导菱形.14、(2,6)、(5,6)、(8,6)【解析】当PA=PO时,根据P在OA的垂直平分线上,得到P的坐标;当OP=OA=10时,由勾股定理求出CP即可;当AP=AO=10时,同理求出BP、CP,即可得出P的坐标.【详解】当PA=PO时,P在OA的垂直平分线上,P的坐标是(5,6);当OP=OA=10时,由勾股定理得:CP==8,P的坐标是(8,6);当AP=AO=10时,同理BP=8,CP=10-8=2,P的坐标是(2,6).故答案为(2,6),(5,6),(8,6).【点睛】本题主要考查对矩形的性质,等腰三角形的性质,勾股定理,坐标与图形的性质等知识点的理解和掌握,能求出所有符合条件的P的坐标是解此题的关键.15、【分析】首先表示“的3倍与2的差”为,再表示“不小于1”为即可得到答案.【详解】根据题意,用不等式表示为故答案是:【点睛】本题考查了列不等式,正确理解题意是解题的关键.16、【分析】原式提取,再利用平方差公式分解即可;首先提取公因式,再利用完全平方公式分解因式得出答案.【详解】解:故答案为:;.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.17、1【解析】直接利用平行线的性质得出∠BEC=108°,再利用角平分线的定义得出答案.【详解】解:∵AB∥CD,∠B=72°,∴∠BEC=108°,∵EF平分∠BEC,∴∠BEF=∠CEF=54°,∵∠GEF=90°,∴∠GED=90°﹣∠FEC=1°.故答案为:1.【点睛】此题主要考查了平行线的性质以及垂线的定义,正确得出∠BEC的度数是解题关键.18、-3或1【分析】分式方程去分母转化为整式方程,分两种情况:(1)无实数根,(2)整式方程的根是原方程的增根,分别求解即可.【详解】去分母得:,整理得,由于原方程无解,故有以下两种情况:(1)无实数根,即且,解得;(2)整式方程的根是原方程的增根,即,解得;故答案为:或.【点睛】此题考查了分式方程无解的条件,分式方程无解,有两种情况,①整式方程本身无解;②整式方程有解,但使得分式方程的最简公分母为零(即为增根).三、解答题(共78分)19、(1)a=85,b=80,c=85;(2)初中部成绩较好;(3)初中代表队的方差为70,高中代表队的方差为160,初中代表队选手成绩较为稳定【分析】(1)直接利用中位数、平均数、众数的定义分别分析求出答案;
(2)利用平均数以及中位数的定义分析得出答案;
(3)利用方差的定义得出答案.【详解】解:(1)填表:平均数(分)中位数(分)众数(分)初中部858585高中部8580100(2)初中部成绩较好,因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩较好.(3)∵,,∴s12<s22,因此初中代表队选手成绩较为稳定.【点睛】此题主要考查了平均数、众数、方差、中位数的定义和性质,正确把握相关定义是解题关键.20、不对,【分析】观察解方程过程,找出错误步骤,再写出正确解答即可.【详解】解:方程两边同乘以,得移项得:解得:经检验:是原分式方程的解所以小马虎同学的解题不对,正确的解是.【点睛】本题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解方程一定注意要验根.21、(1)(y+4)(y﹣6);(2)﹣1,1,﹣4,4,2,﹣2【分析】(1)直接利用十字相乘法分解因式得出答案;(2)利用十字相乘法分解因式得出所有的可能.【详解】解:(1)y2﹣2y﹣1=(y+4)(y﹣6);(2)若,此时若,此时若,此时若,此时若,此时,此时综上所述,若x2+mx﹣12(m为常数)可分解为两个一次因式的积,m的值可能是﹣1,1,﹣4,4,2,﹣2.【点睛】本题主要考查了十字相乘法分解因式,读懂题意,理解题中给出的例子是解题的关键.22、(1);(2)详见解析【分析】(1)根据等腰三角形的性质得出∠1=∠2,由直线AD垂直平分BC,求出FB=FC,根据等腰三角形的性质得出∠3=∠4,然后求出AB=AE,根据等腰三角形的性质得出∠3=∠5,等量代换求出即可得到;(2)在FC上截取FN,使FN=FE,连接EN,根据等边三角形的判定得出△EFN是等边三角形,求出∠FEN=60°,EN=EF,再求出∠5=∠6,根据SAS推出△EFA≌△ENC,根据全等得出FA=NC,即可证得结论.【详解】解:(1)如图1,∵,∴,∵,∴直线垂直平分,∴,∴,∴,即,∴在等边三角形中,,∴,∴,∴,∵,∴,∵在等边三角形中,,∴;(2)在上截取,使,连接,如图2,∵,∵,∴是等边三角形,∴,,∵为等边三角形,∴,,∴,∴,即,在和中,,∴,∴,∴.【点睛】本题考查了等腰三角形的判定和性质,线段垂直平分线的性质,等边三角形的判定和性质,全等三角形的判定和性质等,能综合运用知识点进行推理是解此题的关键.23、操作发现:(1);(2)见解析;实践探究:(3).【解析】(1)如图1,根据平角定义先求出∠3的度数,再根据两直线平行,同位角相等即可得;(2)如图2,过点B作BD//a,则有∠2+∠ABD=180°,根据已知条件可得∠ABD=60°-∠1,继而可得∠2+60°-∠1=180°,即可求得结论;(3)∠1=∠2,如图3,过点C作CD//a,由已知可得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,根据平行线的性质可得∠BCD=∠2,继而可求得∠1=∠BAM=60°,再根据∠BCD=∠BCA-∠DCA求得∠BCD=60°,即可求得∠1=∠2.【详解】(1)如图1,∵∠BCA=90°,∠1=46°,∴∠3=180°-∠BCA-∠1=44°,∵a//b,∴∠2=∠3=44°;(2)理由如下:如图2,过点B作BD//a,∴∠2+∠ABD=180°,∵a//b,∴b//BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:如图3,过点C作CD//a,∵AC平分∠BAM,∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=2×30°=60°,∵CD//a,∴∠BCD=∠2,∵a//b,∴∠1=∠BAM=60°,b//CD,∴∠DCA=∠CAM=30°,∵∠BCD=∠BCA-∠DCA,∴∠BCD=90°-30°=60°,∴∠2=60°,∴∠1=∠2.【点睛】本题考查了平行线的判定与性质,三角板的知识,正确添加辅助线,熟练掌握平行线的判定与性质是解题的关键.24、(1)见解析;(2)成立,理由见解析【分析】(1)根据AAS证明△ADB≌△CEA,得到AE=BD,AD=CE,即可证明;(2)同理证明△ADB≌△CEA,得到AE=BD,AD=CE,即可证明;【详解】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年中国广告灯箱用电子镇流器市场调查研究报告
- 2024年中国光电保护器市场调查研究报告
- 学校防溺水安全演练方案
- 跳绳教学法与评估方案
- 燃气管道可燃气体泄漏监测方案
- 防雷技术施工方案p
- 家居行业家具供货方案及售后保障
- 2023年测绘仪器与设备项目成效分析报告
- 2024年车库坡道用漆项目评估分析报告
- 2024年蔬菜项目评估分析报告
- 2024年商铺房屋租赁合同书范文
- 手糊补强工A卷考试 (1)附有答案
- 新课标背景下“物联网实践与探索”模块教学实践
- CJT511-2017 铸铁检查井盖
- 2024译林版英语初一上单词默写表
- 2024年云南省中考数学试卷
- 社会实践调查工作报告标准版(10篇)
- 2024年部编版七年级下册道法期中考试试卷
- (高清版)JTG 5421-2018 公路沥青路面养护设计规范
- 《1+X幼儿照护(中级)》课件-6.3.3呼吸系统疾病的识别与照护
- 大学生成长赛道职业规划
评论
0/150
提交评论